scholarly journals The influence of elastic deformations in high-strength structural materials on the hydrogen transport

2021 ◽  
Vol 225 ◽  
pp. 01010
Author(s):  
Polina Grigoreva ◽  
Elena Vilchevskaya ◽  
Vladimir Polyanskiy

In this work, the diffusion equation for the gas-solid system is revised to describe the non-uniform distribution of hydrogen in steels. The first attempt to build a theoretical and general model and to describe the diffusion process as driven by a chemical potential gradient is made. A linear elastic solid body and ideal gas, diffusing into it, are considered. At this stage, we neglect any traps and non-linear effects. The coupled diffusion-elastic boundary problem is solved for the case of the cylinder under the tensile loads. The obtained results correspond to the experimental ones. Based on them, the assumptions about the correctness of the model and its further improvement are suggested.

1990 ◽  
Vol 57 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Asher A. Rubinstein

The material-toughening mechanism based on the crack-path deflection is studied. This investigation is based on a model which consists of a macrocrack (semi-infinite crack), with a curvilinear segment at the crack tip, situated in a brittle solid. The effect of material toughening is evaluated by comparison of the remote stress field parameters, such as the stress intensity factors (controlled by a loading on a macroscale), to effective values of these parameters acting in the vicinity of a crack tip (microscale). The effects of the curvilinear crack path are separated into three groups: crack-tip direction, crack-tip geometry pattern-shielding, and crack-path length change. These effects are analyzed by investigation of selected curvilinear crack patterns such as a macrocrack with simple crack-tip kink in the form of a circular arc and a macrocrack with a segment at the crack tip in the form of a sinusoidal wave. In conjunction with this investigation, a numerical procedure has been developed for the analysis of curvilinear cracks (or a system of cracks) in a two-dimensional linear elastic solid. The formulation is based on the solution of a system of singular integral equations. This numerical scheme was applied to the cases of finite and semi-infinite cracks.


2012 ◽  
Vol 581-582 ◽  
pp. 582-585
Author(s):  
Guo Dong Zhang ◽  
Ya Dong Xiao ◽  
Nian Liu ◽  
Min Hong

The welding between Fe-Al intermetallic compound and high-strength steel was done via SPS technology. Microstructure, elements concentration and micro-hardness of welding joint were examined. The results indicated that there was no obvious welding heat-affected zone in both Fe-Al intermetallic compound and high-strength steel. The HAZ microstructures of high-strength steel were mainly martensite. In Fe-Al intermetallic compound, the grain size of heat-affected zone was larger than that of base metal and the density of heat-affected zone was lower than that of base metal. Besides, the grains of base metal had deformation phenomena. The welding joint had steady performance and the connection was reliable. Under the influence of chemical potential differences, unidirectional impulses discharge current and axial pressure, elements diffused perfectly in a short period of time.


2021 ◽  
Author(s):  
Xiaoliang Jia ◽  
Zhiwei Chen ◽  
Fang Ji

Abstract High strength steel is usually used in fabrication of hydrogen storage vessel. The fracture toughness of high strength steel will be decreased and the crack sensitivity of the structures will be increased when high strength steels are applied in hydrogen environment with high pressure. Hence, the small cracks on the surface of pressure vessel may grow rapidly then lead to rupture. Therefore, this paper makes a series of research on how to evaluate the 4130X steel hydrogen storage vessel with fracture mechanics. This study is based on the assumption that there is a semi-elliptic crack on internal surface of hydrogen storage vessel. First of all, based on linear elastic fracture mechanics, the stress intensity factors and crack tolerance of 4130X steel hydrogen storage vessel have been calculated by means of finite element method based on interaction integral theory and polynomial-approximated approach from GB/T 34019 Ultra-high pressure vessels. Then, a comparative study has been made from the results of above methods to find out the difference between them. At last, the fatigue life of a 4130X steel hydrogen storage vessel has been predicted based on linear elastic fracture mechanics and Paris formula. The calculation methods and analysis conclusion can be used to direct the design and manufacture of hydrogen storage vessel.


2021 ◽  
Author(s):  
Roland Hermann Pawelke

A remarkable finding of metal hydride hydrogen storage is that substituting 4 mol % sodium by potassium in 4 mol % Ti-doped NaAlH<sub>4</sub> raises the reversible hydrogen storage capacity from 3.3 % w/w H to 4.7 % w/w H. This increase by 42% is concomitant with a slightly lower desorption enthalpy: intriguingly enough, it is substantially more hydrogen capacity at slightly less desorption enthalpy. The general solution to that puzzle has been already derived from a gas phase point of view, taking advantage of the equilibrium nature of the matter, which thus comes in terms of an ideal gas chemical potential. However, it is also interesting to investigate for the flipside effect in the sorbent phase, affecting molar volume. This paper elucidates by the example of K/Ti-co-doped NaAlH<sub>4</sub> the relation of doping modifications to surplus hydrogen amount and hydride molar volume, defining the term “reaction pathway” in this context, yielding the according figures.<br>


Author(s):  
Brian Bayly

In Chapters 2, 3, and 4, the usefulness of the concept chemical potential has been explored for describing and predicting movement of material from point to point in space—from a location where a component's potential is high to a location where its potential is lower. But chemical potential influences another type of material behavior as well, as in the example at the end of Chapter 2, the polymerization of vinyl chloride. The polymerization is a process that runs at a certain rate, like diffusion of salt, and the rate depends on the potential difference between the starting state and the end state; but unlike diffusion of salt, there is no overall movement from one location to a new location—the vinyl chloride simply polymerizes where it is. There are movements, of course, on the scale of the interatomic distances, but nothing corresponding to the 4 m of travel that appears in the discussion of the dike. If no travel is involved, it is not so easy to calculate a potential gradient along the travel path and go on to predict a rate of response. Yet there definitely is a rate of response, even with PVC polymerizing. The purpose of this chapter is to consider this matter; we shall then be equipped to begin considering nonhydrostatic conditions. The essential idea is to represent all possible degrees of polymerization along an axis, as in Figure 5.1. The figure is drawn to represent a condition where the chemical potential per kilogram is greater in the monomer form than in the dimer form, i.e., a condition where the material polymerizes spontaneously. Suppose we know the chemical potential per kilogram for all degrees of polymerization and also, at some temperature, the rates at which 2 forms from 1, 3 forms from 2, etc. (per kg of the starting form in a pure state). Then we arbitrarily pick a distance on the horizontal axis to separate point 1 from point 2.


1965 ◽  
Vol 208 (2) ◽  
pp. 401-406 ◽  
Author(s):  
Alvin Essig

Previous studies have demonstrated that removal of potassium from sodium-Ringer solution bathing the serosal surface of the toad badder depressed net sodium transport to some 5% of control value, whereas with choline-Ringer solution as serosal medium removal of serosal potassium depressed net sodium transport only to some 55% of control value. Although transport is down a chemical potential gradient in the latter situation, it appears to be an active process, for it is depressed by anaerobiosis, and persists against an electrochemical potential gradient. The data suggest that the concentration of potassium at the serosal aspect of the sodium pump is not in itself the rate-determining factor for active sodium transport following removal of serosal potassium.


2007 ◽  
Vol 26-28 ◽  
pp. 1207-1210
Author(s):  
Hyung Seok Kim ◽  
Ju Hyung Suh ◽  
Chan Gyung Park ◽  
Sang Jun Lee ◽  
Sam Kyu Noh ◽  
...  

The microstructure and strain characteristics of self-assembled InAs/GaAs quantum dots (QDs) were studied by using transmission electron microscopy. Compressive strain was induced to uncapped QDs from GaAs substrate and the misfit strain largely increased after the deposition of GaAs cap layer. Tensile strain outside QD was extended along the vertical growth direction; up to 15 nm above the wetting layer. Vertically nonaligned and aligned stacked QDs were grown by adjusting the thickness of GaAs spacer layers. The QDs with a lens-shaped morphology were formed in the early stage of growth, and their apex was flattened by the out-diffusion of In atoms upon GaAs capping. However, aligned QDs maintained their lens-shaped structure with round apex after capping. It is believed that their apex did not flatten because the chemical potential gradient of In was relatively low due to the adjacent InAs QD layers.


Author(s):  
Kisaburo Azuma ◽  
Yinsheng Li ◽  
Kunio Hasegawa

The interaction of multiple flaws in close proximity to one another may increase the stress intensity factor of the flaw in structures and components. This interaction effect is not distributed uniformly along the crack front. For instance, the strongest interaction is generally observed at the point closest to a neighboring flaw. For this reason, the closest point could show a higher value of the stress intensity factor than all other points in some cases, even if the original value at the point of the single flaw is relatively low. To clarify the condition when the closest point shows the maximum stress intensity factor, we investigated the interaction of two similar elliptical flaws in an infinite model subjected to remote tension loading. The stress intensity factor of the elliptical flaws was obtained by performing finite element analysis of a linear elastic solid. The results indicated that the interaction factors along the crack front can be expressed by a simple empirical formula. Finally, we show the relationship between geometrical features of the flaw and the stress intensity factor at the closest point to a neighboring flaw.


Sign in / Sign up

Export Citation Format

Share Document