Chemical Properties of Interstellar Polycyclic Aromatic Molecules

1987 ◽  
pp. 545-546
Author(s):  
Alain Omont
1987 ◽  
Vol 120 ◽  
pp. 545-546 ◽  
Author(s):  
Alain Omont

There is substantial evidence of the presence of polycyclic aromatic molecules, mainly hydrocarbons (PAH's) in the interstellar medium (Léger and Puget, 1984, Allamandola et al. 1985, Léger and d'Hendecourt in these proceedings). They should contain typically NC = 20–100 carbon atoms, and they can contain perhaps 1–10% of the total interstellar carbon. I have recently discussed in detail their physical and chemical properties (Omont, 1986), which should be intermediate between that of conventional interstellar molecules and grains.


2021 ◽  
Vol 11 (14) ◽  
pp. 6305
Author(s):  
Xiaosen Li ◽  
Yakui Chen ◽  
Xianyuan Du ◽  
Jin Zheng ◽  
Diannan Lu ◽  
...  

The study applied microbial molecular biological techniques to show that 2.5% to 3.0% (w/w) of diesel in the soil reduced the types and number of bacteria in the soil and destroyed the microbial communities responsible for the nitrogen cycle. In the meantime, the alkane degradation gene alkB and polycyclic aromatic hydrocarbons (PAHs) degradation gene nah evolved in the contaminated soil. We evaluated four different remediation procedures, in which the biostimulation-bioaugmentation joint process reached the highest degradation rate of diesel, 59.6 ± 0.25% in 27 days. Miseq sequencing and quantitative polymerase chain reaction (qPCR) showed that compared with uncontaminated soil, repaired soil provides abundant functional genes related to soil nitrogen cycle, and the most significant lifting effect on diesel degrading bacteria γ-proteobacteria. Quantitative analysis of degrading functional genes shows that degrading bacteria can be colonized in the soil. Gas chromatography-mass spectrometry (GC-MS) results show that the components remaining in the soil after diesel degradation are alcohol, lipids and a small amount of fatty amine compounds, which have very low toxicity to plants. In an on-site remediation experiment, the diesel content decreased from 2.7% ± 0.3 to 1.12% ± 0.1 after one month of treatment. The soil physical and chemical properties returned to normal levels, confirming the practicability of the biosimulation-bioaugmentation jointed remediation process.


1983 ◽  
Vol 105 (21) ◽  
pp. 6383-6389 ◽  
Author(s):  
K. Chandrasekaran ◽  
J. K. Thomas

1974 ◽  
Vol 27 (4) ◽  
pp. 556-561 ◽  
Author(s):  
Richard H. Clarke ◽  
John M. Hayes

2013 ◽  
Vol 69 (4) ◽  
pp. 703-709 ◽  
Author(s):  
Georgios Roinas ◽  
Cath Mant ◽  
John B. Williams

Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.


2021 ◽  
Author(s):  
Rahul Kumar Kushwaha ◽  
Ambresh Mallya ◽  
Dipen Sahu ◽  
Jaya Krishna Meka ◽  
Sheng-Lung Chou ◽  
...  

<p>Benzene (C<sub>6</sub>H<sub>6</sub>) ice has been observed in the Titan’s stratosphere [1], and benzonitrile (C<sub>6</sub>H<sub>5</sub>CN) is a possible constituent in the benzene and nitrogen-rich environment of Titan’s atmosphere [2]. The energetic processing of such aromatic molecules can synthesize large and complex aromatic molecules such as the Polycyclic Aromatic Hydrocarbons (PAHs). To-date a number of laboratory experiments have reported the formation of complex organics from the energetic processing of aromatic molecules [3-6]. In particular, Scanning Electron Microscopy (SEM) micrographs of the residues resulting from irradiated benzene ices are found to contain geometrically shaped particles [6]. Therefore, by employing electron microscopes, we can understand the physical nature of the dust leftover from the aromatic molecule irradiation.</p> <p>In the present investigation, we subjected benzonitrile ice made at 4 K to vacuum ultraviolet (9 eV) radiation at two beamlines, BL03 and BL21A2 of Taiwan Light Source at NSRRC, Taiwan. After irradiation, the ice was warmed to room temperature, which left a brownish residue on the Potassium Bromide (KBr) substrate. The VUV spectrum of the residue is observed to have characteristic aromatic signatures. The residue is then transferred to a quantifoil grid for High-Resolution Transmission Electron Microscope (HR- TEM) imaging. HR-TEM micrographs revealed the presence of graphene in the residue. This result suggests that N-graphene could be present in benzene and nitrogen-rich icy clouds of Titan. The high masses observed by the Cassini plasma spectrometer in Titan’s atmosphere could then be attributed to the presence of N-graphene along with the more common tholins [7].</p> <p><strong>References</strong></p> <p>[1] Vinatier S. et al. (2018) <em>Icarus, 310,</em> 89.</p> <p>[2] Loison J. C. et al. (2019) <em>Icarus 329,</em> 55.</p> <p>[3] Strazzulla G. et al. (1991) <em>A&A, 241</em>, 310.</p> <p>[4] Callahan M. P. et al. (2013) <em>Icarus, 226</em>, 1201.</p> <p>[5] James R. et al. (2019) <em>RSC Adv. 9</em> (10), 5453.</p> <p>[6] Rahul K. K. et al. (2020) <em>Spectrochim. Acta A, 231, </em>117797.</p> <p>[7] Rahul K. K. et al. (2020) <em>arXiv:2008.10011</em>.</p>


1967 ◽  
Vol 47 (5) ◽  
pp. 1609-1619 ◽  
Author(s):  
Mark W. Dowley ◽  
Kenneth B. Eisenthal ◽  
Warner L. Peticolas

Sign in / Sign up

Export Citation Format

Share Document