Graphene in Titan

2021 ◽  
Author(s):  
Rahul Kumar Kushwaha ◽  
Ambresh Mallya ◽  
Dipen Sahu ◽  
Jaya Krishna Meka ◽  
Sheng-Lung Chou ◽  
...  

<p>Benzene (C<sub>6</sub>H<sub>6</sub>) ice has been observed in the Titan’s stratosphere [1], and benzonitrile (C<sub>6</sub>H<sub>5</sub>CN) is a possible constituent in the benzene and nitrogen-rich environment of Titan’s atmosphere [2]. The energetic processing of such aromatic molecules can synthesize large and complex aromatic molecules such as the Polycyclic Aromatic Hydrocarbons (PAHs). To-date a number of laboratory experiments have reported the formation of complex organics from the energetic processing of aromatic molecules [3-6]. In particular, Scanning Electron Microscopy (SEM) micrographs of the residues resulting from irradiated benzene ices are found to contain geometrically shaped particles [6]. Therefore, by employing electron microscopes, we can understand the physical nature of the dust leftover from the aromatic molecule irradiation.</p> <p>In the present investigation, we subjected benzonitrile ice made at 4 K to vacuum ultraviolet (9 eV) radiation at two beamlines, BL03 and BL21A2 of Taiwan Light Source at NSRRC, Taiwan. After irradiation, the ice was warmed to room temperature, which left a brownish residue on the Potassium Bromide (KBr) substrate. The VUV spectrum of the residue is observed to have characteristic aromatic signatures. The residue is then transferred to a quantifoil grid for High-Resolution Transmission Electron Microscope (HR- TEM) imaging. HR-TEM micrographs revealed the presence of graphene in the residue. This result suggests that N-graphene could be present in benzene and nitrogen-rich icy clouds of Titan. The high masses observed by the Cassini plasma spectrometer in Titan’s atmosphere could then be attributed to the presence of N-graphene along with the more common tholins [7].</p> <p><strong>References</strong></p> <p>[1] Vinatier S. et al. (2018) <em>Icarus, 310,</em> 89.</p> <p>[2] Loison J. C. et al. (2019) <em>Icarus 329,</em> 55.</p> <p>[3] Strazzulla G. et al. (1991) <em>A&A, 241</em>, 310.</p> <p>[4] Callahan M. P. et al. (2013) <em>Icarus, 226</em>, 1201.</p> <p>[5] James R. et al. (2019) <em>RSC Adv. 9</em> (10), 5453.</p> <p>[6] Rahul K. K. et al. (2020) <em>Spectrochim. Acta A, 231, </em>117797.</p> <p>[7] Rahul K. K. et al. (2020) <em>arXiv:2008.10011</em>.</p>

1993 ◽  
Vol 8 (11) ◽  
pp. 2757-2760 ◽  
Author(s):  
Yasuro Ikuma ◽  
Toshio Sugiyama ◽  
Junko Okano

Zirconia-toughened MgO was manufactured and examined by scanning and transmission electron microscopes. It was found that ZrO2 particles that are present on the MgO grain boundary limit the grain growth of MgO. The cooling rate has an effect on the ZrO2 phase in zirconia-toughened MgO fired in a cubic ZrO2–MgO field, but it does not have an effect on the ZrO2 phase in specimens fired in a tetragonal ZrO2–MgO field. Tetragonal ZrO2 was retained at room temperature in zirconia-toughened MgO.


Author(s):  
D. M. Ramnani ◽  
G. D. Cain

Ascaris suum, an intestinal parasite of swine, has a complex body wall, consisting of nine distinct layers when observed by transmission electron microscopy. The outermost layer of the cortex is a trilaminar region, the epicuticle, that is similar in appearance to plasma membrane. Parasitic nematodes interact with their hosts through this layer. The structure of the epicuticle is being studied with transmission and scanning electron microscopes.Parasites were obtained from an abattoir at Waterloo, Iowa, and maintained in Harpur's saline medium for up to two days. Cuticles were separated by microdissection and washed in 0.1M phosphate buffer, pH 7.2. Trump's universal fixative (4% Formaldehyde: 1% Glutaraldehyde in phosphate buffer, pH 7.2 ) was used for 1 h at room temperature for primary fixation. Surface charge of epicuticle was studied by incubating cuticle with cationized ferritin (Polysciences) at a concentration of lmg/ml in 0.1M phosphate buffer, pH 7.2, for 30 minutes at room temperature.


2001 ◽  
Vol 676 ◽  
Author(s):  
M. S. Kabir ◽  
S. H. Magnus Persson ◽  
Yimin Yao ◽  
Jean Phillippe Bourgoin ◽  
Serge Palacin

ABSTRACTElectrodes for making connections to single molecules and clusters must have separations smaller than 10 nm. They are therefore difficult or impossible to image with atomic force microscopes (AFM) or Scanning Electron Microscopes (SEM). We have fabricated nanoelelectrodes by different methods to contacts nanoclusters and conjugated molecules and investigated their properties in transmission electron microscope (TEM) and their electrical characteristics at room temperature and at 4.2K. The electrodes are made on SiN4 membranes, which is transparent to high energy electrons and which make it possible to image features of a few nanometers in TEM.


1985 ◽  
Vol 39 (3) ◽  
pp. 516-519 ◽  
Author(s):  
Robert Weinberger ◽  
L. J. Cline Love

A unique and facile means of producing room-temperature phosphorescence (RTP) from colloidal or microcrystalline suspensions of aromatic molecules in aqueous media is reported. Unlike previously reported RTP techniques, colloidal RTP is insensitive to quenching by dissolved oxygen. Delayed fluorescence was observed from several non-phosphorescent species. Potential uses of the technique are for the determination of the solubility of highly insoluble compounds and the ability to distinguish between suspended and dissolved matter.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
John C. Russ ◽  
Nicholas C. Barbi

The rapid growth of interest in attaching energy-dispersive x-ray analysis systems to transmission electron microscopes has centered largely on microanalysis of biological specimens. These are frequently either embedded in plastic or supported by an organic film, which is of great importance as regards stability under the beam since it provides thermal and electrical conductivity from the specimen to the grid.Unfortunately, the supporting medium also produces continuum x-radiation or Bremsstrahlung, which is added to the x-ray spectrum from the sample. It is not difficult to separate the characteristic peaks from the elements in the specimen from the total continuum background, but sometimes it is also necessary to separate the continuum due to the sample from that due to the support. For instance, it is possible to compute relative elemental concentrations in the sample, without standards, based on the relative net characteristic elemental intensities without regard to background; but to calculate absolute concentration, it is necessary to use the background signal itself as a measure of the total excited specimen mass.


Author(s):  
E. Zeitler ◽  
M. G. R. Thomson

In the formation of an image each small volume element of the object is correlated to an areal element in the image. The structure or detail of the object is represented by changes in intensity from element to element, and this variation of intensity (contrast) is determined by the interaction of the electrons with the specimen, and by the optical processing of the information-carrying electrons. Both conventional and scanning transmission electron microscopes form images which may be considered in this way, but the mechanism of image construction is very different in the two cases. Although the electron-object interaction is the same, the optical treatment differs.


Author(s):  
A.J. Tousimis ◽  
T.R. Padden

The size, shape and surface morphology of human erythrocytes (RBC) were examined by scanning electron microscopy (SEM), of the fixed material directly and by transmission electron microscopy (TEM) of surface replicas to compare the relative merits of these two observational procedures for this type specimen.A sample of human blood was fixed in glutaraldehyde and washed in distilled water by centrifugation. The washed RBC's were spread on freshly cleaved mica and on aluminum coated microscope slides and then air dried at room temperature. The SEM specimens were rotary coated with 150Å of 60:40- gold:palladium alloy in a vacuum evaporator using a new combination spinning and tilting device. The TEM specimens were preshadowed with platinum and then rotary coated with carbon in the same device. After stripping the RBC-Pt-C composite film, the RBC's were dissolved in 2.5N HNO3 followed by 0.2N NaOH leaving the preshadowed surface replicas showing positive topography.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Sign in / Sign up

Export Citation Format

Share Document