Stimulus-Response and Information Processing Computer Theories of Memory

1978 ◽  
pp. 61-104
Author(s):  
Howard Alexander Bursen
1973 ◽  
Vol 37 (3) ◽  
pp. 835-839 ◽  
Author(s):  
Herbert Moskowitz ◽  
Marcelline Burns

Response latencies in naming visually displayed numbers were measured for 20 Ss under control and alcohol treatments. The size of the stimulus pool was varied by sets of trials to produce stimulus-response uncertainty in the range 0 to 5 bits. Response latencies were a function of the amount of uncertainty, but alcohol impairment was not.


1989 ◽  
Vol 33 (3) ◽  
pp. 174-178 ◽  
Author(s):  
Max Vercruyssen ◽  
Barbara L. Carlton ◽  
Virginia Diggles-Buckles

Using Sternberg's (1969) Additive Factors Method (AFM), previous investigations in search of the locus of age-related slowing in reactive capacity have found conflicting results possibly due to inconsistencies in research methodologies. This experiment was conducted to examine age differences in the performance of AFM intratask manipulations of a reaction time task using both fixed and variable foreperiod conditions with subject testing at both naive and practiced skill levels. Twenty male subjects, ten young and ten old, performed a visual four-choice RT task with intratask manipulations of stimulus-degradation, stimulus-response compatibility, and response-stimulus intervals (RSIs were fixed at 0, 2, and 5 sec and variable with random presentations at 0, 2, and 5 sec), once when subjects were naive and again when practiced. The results varied by level of practice and RSI, but clearly the older subjects had difficulty with the intratask manipulations. The older subjects took twice as long, on the average, to respond. Interactions of age by compatibility suggest that, according to the AFM, with age comes inordinately long delays in the response selection stage of information processing. Conclusions are made with caution since this research points to limitations and methodological confounds which serve to explain many of the equivocal findings in previous studies.


1998 ◽  
Vol 87 (1) ◽  
pp. 175-185 ◽  
Author(s):  
René Arcelin ◽  
Didier Delignieres ◽  
Jeanick Brisswalter

The aim of the present study was to examine the effects of an exercise of moderate intensity (60% of maximal aerobic power) on specific information-processing mechanisms. 22 students completed 3 10-min. exercise bouts on a bicycle ergometer. Concomitantly, participants performed six manual choice-reaction tasks manipulating task variables (Signal Intensity, Stimulus–Response Compatibility, and Time Uncertainty) on two levels. Reaction tests, randomly ordered, were administered at rest and during exercise. A significant underadditive interaction between Time Uncertainty and exercise was found for the highest quartiles of the distribution of reaction times. No other interaction effects were obtained for the other variables. These results reasonably support that moderate aerobic exercise showed selective rather than general influences on information processing.


Perception ◽  
1973 ◽  
Vol 2 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Shirley Fisher

It was found earlier that a transient ‘distraction effect’ was apparent when 80 dB noise bursts occurred at random during an on-going serial-response task. Experiments are now reported in which the information processing ‘load’ of the on-going serial task was varied (a) by the introduction of increased stimulus predictability, or (b) by the introduction of stimulus–response incompatibility. On the notion that the information processing system acts as a single channel, with increased stimulus predictability there should be a reduced distraction effect, because there would be more capacity available for responding to noise bursts whilst maintaining serial task performance; the reverse should be true for the case of increased stimulus–response incompatibility. Results suggested that the ‘distraction effect’ was reduced in both cases. An additional explanation suggesting that the information processing load of the task itself determined whether or not the noise bursts were providing effective rivalry with the task signals is considered.


2020 ◽  
Vol 23 ◽  
Author(s):  
Genny Lubrini ◽  
José A. Periáñez ◽  
Mireya Fernández-Fournier ◽  
Antonio Tallón Barranco ◽  
Exuperio Díez-Tejedor ◽  
...  

Abstract Increasing findings suggest that different components of the stimulus-response pathway (perceptual, motor or cognitive) may account for slowed performance in Multiple Sclerosis (MS). It has also been reported that depressive symptoms (DS) exacerbate slowness in MS. However, no prior studies have explored the independent and joint impact of MS and DS on each of these components in a comprehensive manner. The objective of this work was to identify perceptual, motor, and cognitive components contributing to slowness in MS patients with and without DS. The study includes 33 Relapsing-Remitting MS patients with DS, 33 without DS, and 26 healthy controls. Five information processing components were isolated by means of ANCOVA analyses applied to five Reaction Time tasks. Perceptual, motor, and visual search components were slowed down in MS, as revealed by ANCOVA comparisons between patients without DS, and controls. Moreover, the compounding effect of MS and DS exacerbated deficits in the motor component, and slowed down the decisional component, as revealed by ANCOVA comparisons between patients with and without DS. DS seem to exacerbate slowness caused by MS in specific processing components. Identifying the effects of having MS and of having both MS and DS may have relevant implications when targeting cognitive and mood interventions.


2021 ◽  
pp. 174702182110376
Author(s):  
Tianfang Han ◽  
Robert Proctor

Posner et al. (1973) reported that, at short fixed foreperiods, a neutral warning tone reduced reaction times (RTs) in a visual two-choice task while increasing error rates for both spatially compatible and incompatible stimulus-response mappings. Consequently, they concluded that alertness induced by the warning does not affect the efficiency of information processing but the setting of a response criterion. We conducted two experiments to determine the conditions under which the tradeoff occurs. In Experiment 1, participants performed the same two-choice task as in Posner et al.’s study without RT feedback. Results showed that the warning tone speeded responses with no evidence of speed/accuracy tradeoff. In Experiment 2, RT feedback was provided after each response, and a speed/accuracy trade off was found for the 50-ms foreperiod. However, better information-processing efficiency was evident for the 200-ms foreperiod. We conclude that the foreperiod effect of a 50-ms foreperiod is a result of response-criterion adjustment and that providing trial-level RT feedback is critical for replicating this pattern. On the other hand, fixed foreperiods of 200-ms or longer benefit both speed and accuracy, implying a more controlled preparation component that improves response efficiency.


2019 ◽  
Author(s):  
K.G. Garner ◽  
M.I. Garrido ◽  
P.E. Dux

AbstractHumans show striking limitations in information processing when multitasking, yet can modify these limits with practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-making implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry underpinning multitasking in 100 individuals and the plasticity caused by practice. We observed that multitasking costs, and their practice induced remediation, are best explained by modulations in information transfer between the striatum and the cortical areas that represent stimulus-response mappings. Specifically, our results support the view that multitasking stems at least in part from taxation in information sharing between the putamen and pre-supplementary motor area (pre-SMA). Moreover, we propose that modulations to information transfer between these two regions leads to practice-induced improvements in multitasking.Significance statementHumans show striking limitations in information processing when multitasking, yet can modify these limits with practice. Such limitations have been linked to a frontal-parietal network, but recent models of decision-making implicate a striatal-cortical network. We adjudicated these accounts by investigating the circuitry underpinning multitasking in 100 individuals and the plasticity caused by practice. Our results support the view that multitasking stems at least in part from taxation in information sharing between the putamen and pre-supplementary motor area (pre-SMA). We therefore show that models of cognitive capacity limits must consider how subcortical and cortical structures interface to produce cognitive behaviours, and we propose a novel neurophysiological substrate of multitasking limitations.


2021 ◽  
Author(s):  
Amanda K Robinson ◽  
Anina N Rich ◽  
Alexandra Woolgar

The human brain is extremely flexible and capable of rapidly selecting relevant information in accordance with task goals. Regions of frontoparietal cortex flexibly represent relevant task information such as task rules and stimulus features when participants perform tasks successfully, but less is known about how information processing breaks down when participants make mistakes. This is important for understanding whether and when information coding recorded with neuroimaging is directly meaningful for behaviour. Here, we used magnetoencephalography (MEG) to assess the temporal dynamics of information processing, and linked neural responses with goal-directed behaviour by analysing how they changed on behavioural error. Participants performed a difficult stimulus-response task using two stimulus-response mapping rules. We used time-resolved multivariate pattern analysis to characterise the progression of information coding from perceptual information about the stimulus, cue and rule coding, and finally, motor response. Response-aligned analyses revealed a ramping up of perceptual information prior to a correct response, suggestive of internal evidence accumulation. Strikingly, when participants made a stimulus-related error, and not when they made other types of errors, patterns of activity initially reflected the stimulus presented, but later reversed, and accumulated towards a representation of the incorrect stimulus. This suggests that the patterns recorded at later timepoints reflect an internally generated stimulus representation that was used to make the (incorrect) decision. These results illustrate the orderly and overlapping temporal dynamics of information coding in perceptual decision-making and show a clear link between neural patterns in the late stages of processing and behaviour.


Sign in / Sign up

Export Citation Format

Share Document