Hormones in systemic acquired resistance: The role of salicylic acid

Author(s):  
Ilya Raskin ◽  
Paul Silverman ◽  
Nasser Yalpani
Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 803-811
Author(s):  
Gregory J Rairdan ◽  
Terrence P Delaney

Abstract Salicylic acid (SA) and the NIM1/NPR1 protein have both been demonstrated to be required for systemic acquired resistance (SAR) and implicated in expression of race-specific resistance. In this work, we analyzed the role that each of these molecules play in the resistance response triggered by members of two subclasses of resistance (R) genes, members of which recognize unrelated pathogens. We tested the ability of TIR and coiled-coil-class (also known as leucine-zipper-class) R genes to confer resistance to Pseudomonas syringae pv. tomato or Peronospora parasitica in SA-depleted (NahG) and nim1/npr1 plants. We found that all of the P. syringae pv. tomato-specific R genes tested were dependent upon SA accumulation, while none showed strong dependence upon NIM1/NPR1 activity. A similar SA dependence was observed for the P. parasitica TIR and CC-class R genes RPP5 and RPP8, respectively. However, the P. parasitica-specific R genes differed in their requirement for NIM1/NPR1, with just RPP5 depending upon NIM1/NPR1 activity for effectiveness. These data are consistent with the hypothesis that at least in Arabidopsis, SA accumulation is necessary for the majority of R-gene-triggered resistance, while the role of NIM1/NPR in race-specific resistance is limited to resistance to P. parasitica mediated by TIR-class R genes.


2018 ◽  
Vol 31 (9) ◽  
pp. 871-888 ◽  
Author(s):  
Daniel F. Klessig ◽  
Hyong Woo Choi ◽  
D’Maris Amick Dempsey

This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.


1995 ◽  
Vol 25 (9) ◽  
pp. 1479-1483 ◽  
Author(s):  
M. Gabrielle Pausler ◽  
William A. Ayer ◽  
Yasuyuki Hiratsuka

Trembling aspen (Populustremuloides Michx.) bearing certain types of black galls have a lower incidence of Phellinustremulae (Bond.) Bond. & Boriss. heartwood rot than do nongall-bearing trees. Extraction of finely ground black gall tissue with ethyl acetate and separation of the acidic components of the extract led to the isolation of benzoic acid, trans-cinnamic acid, p-hydroxybenzoic acid, p-hydroxycinnamic acid, naringenin, 7′-methyl-3-hydroxynaringen, aromadendrin, and taxifolin. Bioassays revealed that among these compounds, only benzoic acid showed significant activity against P. tremulae. An analytical procedure was developed to measure the concentration of benzoic acid in various types of aspen tissue. Tissue from the black galls showed a high concentration of benzoic acid, and tissue from gall-bearing trees contained significantly more benzoic acid than healthy nongalled trees. However, the amount of benzoic acid present in the gall-bearing trees may not be sufficient to prevent Phellinus decay. It is suggested that perhaps the benzoic acid serves as a precursor of salicylic acid, a signal molecule in systemic acquired resistance of plants.


2015 ◽  
Vol 112 (30) ◽  
pp. 9166-9173 ◽  
Author(s):  
Xiao-yu Zheng ◽  
Mian Zhou ◽  
Heejin Yoo ◽  
Jose L. Pruneda-Paz ◽  
Natalie Weaver Spivey ◽  
...  

The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.


2007 ◽  
Vol 97 (7) ◽  
pp. 794-802 ◽  
Author(s):  
Shobha D. Potlakayala ◽  
Darwin W. Reed ◽  
Patrick S. Covello ◽  
Pierre R. Fobert

Systemic acquired resistance (SAR) is an induced defense response that confers long-lasting protection against a broad range of microbial pathogens. Here we show that treatment of Brassica napus plants with the SAR-inducing chemical benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) significantly enhanced resistance against virulent strains of the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Leptosphaeria maculans. Localized preinoculation of plants with an avirulent strain of P. syringae pv. maculicola also enhanced resistance to these pathogens but was not as effective as BTH treatment. Single applications of either SAR-inducing pretreatment were effective against P. syringae pv. maculicola, even when given more than 3 weeks prior to the secondary challenge. The pretreatments also led to the accumulation of pathogenesis-related (PR) genes, including BnPR-1 and BnPR-2, with higher levels of transcripts observed in the BTH-treatment material. B. napus plants expressing a bacterial salicylate hydroxylase transgene (NahG) that metabolizes salicylic acid to catechol were substantially compromised in SAR and accumulated reduced levels of PR gene transcripts when compared with untransformed controls. Thus, SAR in B. napus displays many of the hallmarks of classical SAR including long lasting and broad host range resistance, association with PR gene activation, and a requirement for salicylic acid.


Sign in / Sign up

Export Citation Format

Share Document