Quantum Deformations of D = 4 Poincaré Algebra

1992 ◽  
pp. 33-44
Author(s):  
Jerzy Lukierski ◽  
Anatol Nowicki
Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Angel Ballesteros ◽  
Giulia Gubitosi ◽  
Flavio Mercati

Recent work showed that κ-deformations can describe the quantum deformation of several relativistic models that have been proposed in the context of quantum gravity phenomenology. Starting from the Poincaré algebra of special-relativistic symmetries, one can toggle the curvature parameter Λ, the Planck scale quantum deformation parameter κ and the speed of light parameter c to move to the well-studied κ-Poincaré algebra, the (quantum) (A)dS algebra, the (quantum) Galilei and Carroll algebras and their curved versions. In this review, we survey the properties and relations of these algebras of relativistic symmetries and their associated noncommutative spacetimes, emphasizing the nontrivial effects of interplay between curvature, quantum deformation and speed of light parameters.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).


2012 ◽  
Vol 360 ◽  
pp. 012010
Author(s):  
A Ballesteros ◽  
F J Herranz ◽  
C Meusburger

1995 ◽  
Vol 36 (10) ◽  
pp. 5916-5937 ◽  
Author(s):  
A. Ballesteros ◽  
N. A. Gromov ◽  
F. J. Herranz ◽  
M. A. del Olmo ◽  
M. Santander

1994 ◽  
Vol 27 (6) ◽  
pp. 2061-2073 ◽  
Author(s):  
Won-Sang Chung ◽  
Ki-Soo Chung ◽  
Sang-Tack Nam ◽  
Hye-Jung Kang

1996 ◽  
Vol 46 (2-3) ◽  
pp. 217-225
Author(s):  
Jerzy Lukierski ◽  
Pierre Minnaert ◽  
Marek Mozrzymas

Sign in / Sign up

Export Citation Format

Share Document