scholarly journals Colourful Poincaré symmetry, gravity and particle actions

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.

2003 ◽  
Vol 18 (supp02) ◽  
pp. 97-113 ◽  
Author(s):  
John W. Barrett

A set of observables is described for the topological quantum field theory which describes quantum gravity in three space-time dimensions with positive signature and positive cosmological constant. The simplest examples measure the distances between points, giving spectra and probabilities which have a geometrical interpretation. The observables are related to the evaluation of relativistic spin networks by a Fourier transform.


1992 ◽  
Vol 07 (09) ◽  
pp. 1935-1951 ◽  
Author(s):  
G.A. KOZLOV

A systematic discussion of the probability of eta and KL bound-state decays—[Formula: see text] and [Formula: see text](l=e, μ)—within a three-dimensional reduction to the two-body quantum field theory is presented. The bound-state vertex function depends on the relative momentum of constituent-like particles. A structure-transition form factor is defined by a confinement-type quark-antiquark wave function. The phenomenology of this kind of decays is analyzed.


2018 ◽  
Vol 182 ◽  
pp. 02045
Author(s):  
Francesco Giacosa

We study the properties of the survival probability of an unstable quantum state described by a Lee Hamiltonian. This theoretical approach resembles closely Quantum Field Theory (QFT): one can introduce in a rather simple framework the concept of propagator and Feynman rules, Within this context, we re-derive (in a detailed and didactical way) the well-known result according to which the amplitude of the survival probability is the Fourier transform of the energy distribution (or spectral function) of the unstable state (in turn, the energy distribution is proportional to the imaginary part of the propagator of the unstable state). Typically, the survival probability amplitude is the starting point of many studies of non-exponential decays. This work represents a further step toward the evaluation of the survival probability amplitude in genuine relativistic QFT. However, although many similarities exist, QFT presents some differences w.r.t. the Lee Hamiltonian which should be studied in the future.


1994 ◽  
Vol 338 (2-3) ◽  
pp. 253-258 ◽  
Author(s):  
Eduardo Fradkin ◽  
Fidel A. Schaposnik

2006 ◽  
Vol 84 (10) ◽  
pp. 861-877 ◽  
Author(s):  
T Hirayama ◽  
B Holdom

We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler–Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In [Formula: see text] theory in 1 + 1 dimensions, we find results, in particular, for mass renormalization and the critical coupling for symmetry breaking that are in agreement with their quantum counterparts. We then study the perturbative expansion of the n-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously. PACS Nos.: 03.70.+k, 03.50.–z, 11.15.Tk


2021 ◽  
Vol 9 ◽  
Author(s):  
Stefano Gogioso ◽  
Maria E. Stasinou ◽  
Bob Coecke

We present a compositional algebraic framework to describe the evolution of quantum fields in discretised spacetimes. We show how familiar notions from Relativity and quantum causality can be recovered in a purely order-theoretic way from the causal order of events in spacetime, with no direct mention of analysis or topology. We formulate theory-independent notions of fields over causal orders in a compositional, functorial way. We draw a strong connection to Algebraic Quantum Field Theory (AQFT), using a sheaf-theoretical approach in our definition of spaces of states over regions of spacetime. We introduce notions of symmetry and cellular automata, which we show to subsume existing definitions of Quantum Cellular Automata (QCA) from previous literature. Given the extreme flexibility of our constructions, we propose that our framework be used as the starting point for new developments in AQFT, QCA and more generally Quantum Field Theory.


Sign in / Sign up

Export Citation Format

Share Document