Why Climate Change is Not a Cost/Benefit Problem

1991 ◽  
pp. 33-44
Author(s):  
Peter G. Brown
Keyword(s):  
Author(s):  
Toon Haer ◽  
W. J. Wouter Botzen ◽  
Vincent van Roomen ◽  
Harry Connor ◽  
Jorge Zavala-Hidalgo ◽  
...  

Many countries around the world face increasing impacts from flooding due to socio-economic development in flood-prone areas, which may be enhanced in intensity and frequency as a result of climate change. With increasing flood risk, it is becoming more important to be able to assess the costs and benefits of adaptation strategies. To guide the design of such strategies, policy makers need tools to prioritize where adaptation is needed and how much adaptation funds are required. In this country-scale study, we show how flood risk analyses can be used in cost–benefit analyses to prioritize investments in flood adaptation strategies in Mexico under future climate scenarios. Moreover, given the often limited availability of detailed local data for such analyses, we show how state-of-the-art global data and flood risk assessment models can be applied for a detailed assessment of optimal flood-protection strategies. Our results show that especially states along the Gulf of Mexico have considerable economic benefits from investments in adaptation that limit risks from both river and coastal floods, and that increased flood-protection standards are economically beneficial for many Mexican states. We discuss the sensitivity of our results to modelling uncertainties, the transferability of our modelling approach and policy implications. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’.


2021 ◽  
Author(s):  
R. Nandhi Kesavan ◽  
Latha K

Abstract Among all the threats to global diversity, climate change is the most severe cause. According to the world’s biodiversity conservation organization, reptile species are affected mostly because the biological and ecological traits of the reptiles are strongly linked with climate. To prevent species extinction, we tried to develop a decision support system that incurs the costs and benefits of reintroducing a taxon from its origin to adapt environmental conditions to conserve it from its extinction. The model was developed by applying multiple linear regressions that take the climatic variables and species traits to determine the cost and benefits for the distribution of species. The effectiveness of the model was evaluated by applying it to the Indian Black Turtle, which is an endangered species list in India evaluated by the International Union for Conservation of Nature list. The model recommends moving the species, which is endangered, to the location where it can save itself from climate change. However, the framework demonstrates huge differences in the estimated significance of climate change, and the model strategy helps to recognize the probable risk of increased revelation to critically endangered species.


2021 ◽  
Author(s):  
Bernardo Bastien-Olvera ◽  
Frances Moore

Abstract It is well established that temperature variability affects a range of outcomes relevant to human welfare, including health (Gasparrini et al., 2017) emotion and mood (Baylis et al., 2018), and productivity across a number of economic sectors (Carleton & Hsiang, 2016; Dell et al., 2014). However, a critical and still unresolved empirical question is whether temperature variation has a long-lasting effect on economic productivity and, therefore, whether damages compound over time in response to long-lived changes in temperature expected with climate change. Several studies have identified a relationship between temperature and GDP (Burke et al., 2015; Dell et al., 2012; Kalkuhl & Wenz, 2020), but empirical evidence as to the persistence of these effects is still weak. This paper presents a novel approach to isolate the persistent component of temperature effects on output using lower frequency temperature variation. Using three different datasets we find that longer temperature anomalies affect GDP growth as much or more than short-lived anomalies, implying persistent and therefore cumulative effects of climate change on economic output. The population-weighted global effect of -0.8 pp per degree is sufficient to reduce per-capita income in 2100 by 44% under RCP6, approximately an order of magnitude larger than damages currently represented in cost-benefit integrated assessment models (Diaz & Moore, 2017).


2011 ◽  
Vol 51 (2) ◽  
pp. 687
Author(s):  
Michael Nolan

This paper explores the lessons learnt from the Optimising Adaptation Investment projects for the Department of Climate Change and Energy Efficiency–it includes coastal settlements, water supply and rail infrastructure case studies. These projects are the first of their kind in Australia and are considered internationally as a leading example of economic cost benefit analysis. They have been used effectively to inform decision making on specific adaptation responses to climate change risks to existing and new infrastructure. The lessons learnt will be explored for offshore platforms, ports, rail, road, drainage, tailings dams, mine facilities, water, and power supply, which includes the following elements: What decision makers require to make informed decisions under the uncertainty of climate change impacts. Reducing the uncertainty through economic modelling and cost benefit analysis. Optimising the right timing and scale of various adaptation options. Benefiting from oil and gas infrastructure adaptation opportunities. To further support the elements above, the applied process for integrating climate adaptation into infrastructure planning, design and operation will be illustrated by AECOM project experiences. AECOM has completed more than 60 significant climate change risk and adaptation projects for mines, ports, water supply and treatment, energy generation, transmission and distribution, rail, road, and coastal settlements in Australia, including the report: Climate Change Impacts to Infrastructure in Australia for the Garnaut Climate Change Review.


2020 ◽  
Vol 8 (9) ◽  
pp. 715
Author(s):  
Kazunori Nakajima ◽  
Naoki Sakamoto ◽  
Keiko Udo ◽  
Yuriko Takeda ◽  
Eiji Ohno ◽  
...  

To measure economic effects of changes in environmental quality caused by climate change in Japan, we estimate beach loss damage costs in Japan and in each prefecture and evaluate the economic effectiveness of hypothetical adaptation measures to restore sandy beaches. For analyses, we use a computable general equilibrium model (CGE) that integrates a utility function with environmental quality factors as an independent variable derived from a recreation demand function in a travel cost method (TCM). We use future projections of beach loss rates in 2081–2100 based on ensemble-mean regional sea-level rise (SLR) for four Representative Concentration Pathway (RCPs) scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). The main findings of our study are presented as follows. (1) In 2081–2100, beach loss damage costs were estimated respectively as 398.54 million USD per year for RCP2.6, 468.96 (m.USD/year) for RCP4.5, 494.09 (m.USD/year) for RCP6.0, and 654.63 (m.USD/year) for RCP8.5. (2) For all RCPs, six prefectures for which the cost–benefit ratio exceeds 1.0 were Kanagawa, Osaka, Hyogo, Hiroshima, Saga, and Kumamoto. Our hypothetical adaptation measure of an artificial beach enhancement is expected to be quite effective as a public works project in these prefectures.


1993 ◽  
Vol 7 (4) ◽  
pp. 27-46 ◽  
Author(s):  
John P Weyant

Projecting the costs of reducing carbon emissions is extremely important, and exceedingly difficult. Such projections are an integral component of cost-benefit analyses of alternative policies in response to climate change. This paper first discusses the key dimensions of any projection of the cost of reducing carbon emissions. Then it discusses the projections that have been made, including long-, medium- and short-range time horizons. Finally, the conclusion summarizes what we know and don't know about the costs of controlling carbon emissions and recommends an agenda for future research.


2016 ◽  
Vol 73 (5) ◽  
pp. 1297-1305 ◽  
Author(s):  
Cody S. Szuwalski ◽  
Anne B. Hollowed

Abstract The potential influence of climate change on the future distribution and abundance of fish (and therefore commercial fisheries and food security) is increasingly recognized in the fishery management community. A changing climate will likely have differing effects on different species; some will flourish, some will flounder. Management targets for fishing mortality and spawning biomass are often calculated by assuming stationary population processes, but under climate change, this assumption may be violated. Non-stationary population processes can introduce bias into estimates of biomass from stock assessments and calculations of target fishing mortalities and biomasses. However, few accepted frameworks exist for incorporating the changing influence of the environment on exploited populations into management strategies. Identifying changes in population processes due to environmental influences is important in order to enable climate-enhanced management strategy evaluations to elucidate the potential benefits and costs of changing management targets. Cost/benefit analyses will also be useful when coincidentally caught species respond differently to environmental change.


Sign in / Sign up

Export Citation Format

Share Document