Hydrologic Advances in Space-Time Precipitation Modeling and Forecasting

Author(s):  
Efi Foufoula-Georgiou ◽  
Konstantine P. Georgakakos
2019 ◽  
Vol 8 (4) ◽  
pp. 418-427
Author(s):  
Eko Siswanto ◽  
Hasbi Yasin ◽  
Sudarno Sudarno

In many applications, several time series data are recorded simultaneously at a number of locations. Time series data from nearby locations often to be related by spatial and time. This data is called spatial time series data. Generalized Space Time Autoregressive (GSTAR) model is one of space time models used to modeling and forecasting spatial time series data. This study applied GTSAR model to modeling volume of rainfall four locations in Jepara Regency, Kudus Regency, Pati Regency, and Grobogan Regency. Based on the smallest RMSE mean of forecasting result, the best model chosen by this study is GSTAR (11)-I(1)12 with the inverse distance weighted. Based on GSTAR(11)-I(1)12 with the inverse distance weighted, the relationship between the location shown on rainfall Pati Regency influenced by the rainfall in other regencies. Keywords: GSTAR, RMSE, Rainfall


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2368
Author(s):  
Elias Silva de Medeiros ◽  
Renato Ribeiro de Lima ◽  
Ricardo Alves de Olinda ◽  
Leydson G. Dantas ◽  
Carlos Antonio Costa dos Santos

Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises.


2002 ◽  
Author(s):  
J. B. Kennedy
Keyword(s):  

Author(s):  
Roger Penrose ◽  
Wolfgang Rindler
Keyword(s):  

2018 ◽  
Vol 77 (4) ◽  
pp. 173-184
Author(s):  
Wenxing Yang ◽  
Ying Sun

Abstract. The causal role of a unidirectional orthography in shaping speakers’ mental representations of time seems to be well established by many psychological experiments. However, the question of whether bidirectional writing systems in some languages can also produce such an impact on temporal cognition remains unresolved. To address this issue, the present study focused on Japanese and Taiwanese, both of which have a similar mix of texts written horizontally from left to right (HLR) and vertically from top to bottom (VTB). Two experiments were performed which recruited Japanese and Taiwanese speakers as participants. Experiment 1 used an explicit temporal arrangement design, and Experiment 2 measured implicit space-time associations in participants along the horizontal (left/right) and the vertical (up/down) axis. Converging evidence gathered from the two experiments demonstrate that neither Japanese speakers nor Taiwanese speakers aligned their vertical representations of time with the VTB writing orientation. Along the horizontal axis, only Japanese speakers encoded elapsing time into a left-to-right linear layout, which was commensurate with the HLR writing direction. Therefore, two distinct writing orientations of a language could not bring about two coexisting mental time lines. Possible theoretical implications underlying the findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document