Oxygen Evolution, Chlorophyll Fluorescence and Electron Transport Through Photosystem II in Light Pulses: Acceptor Resistance is Dependent on Nonphotochemical Excitation Quenching

Author(s):  
Agu Laisk ◽  
Vello Oja
1994 ◽  
Vol 72 (2) ◽  
pp. 177-181 ◽  
Author(s):  
Ernesto Bernal-Morales ◽  
Alfonso Romo De Vivar ◽  
Bertha Sanchez ◽  
Martha Aguilar ◽  
Blas Lotina-Hennsen

The inhibition of ATP synthesis, proton uptake, and electron transport (basal, phosphorylating, and uncoupled) from water to methylviologen by ivalin (a naturally occurring sesquiterpene lactone in Zaluzania triloba and Iva microcephala) indicates that it acts as electron transport inhibitor. Since photosystem I and electron transport from DPC to QA were not affected, while the electron flow of uncoupled photosystem II from H2O to DAD and from water to silicomolybdate was inhibited, we concluded that the site of inhibition of ivalin is located at the oxygen evolution level. Key words: oxygen evolution, ivalin, photosynthesis, sesquiterpene lactone.


2004 ◽  
Vol 271 (17) ◽  
pp. 3523-3532 ◽  
Author(s):  
Yagut Allahverdiyeva ◽  
Zsuzsanna Deák ◽  
András Szilárd ◽  
Bruce A. Diner ◽  
Peter J. Nixon ◽  
...  

1996 ◽  
Vol 51 (1-2) ◽  
pp. 47-52 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałk ◽  
K.P. Bader ◽  
A. Radunz ◽  
G.H. Schmid

Abstract In our previous study (Gruszecki et al., 1995) we have postulated that the mechanism of cyclic electron transport around photosystem II, active under overexcitation of the photosynthetic apparatus by light is under control of the xanthophyll cycle. The combination of dif­ferent light quality and thylakoids having various levels of xanthophyll cycle pigments were applied to support this hypothesis. In the present work photosynthetic oxygen evolution from isolated tobacco chloroplasts was measured by means of mass spectrometry under conditions of high or low levels of violaxanthin, being transformed to zeaxanthin during dark incubation in an ascorbate containing buffer at pH 5.7. Analysis of oxygen evolution and of light-induced oxygen uptake indicate that the de-epoxidation of violaxanthin to zeaxanthin results in an increased cyclic electron transport around PS II, thus dimishing the vectorial electron flow from water. An effect similar to de-epoxidation was observed after incubation of thylakoid membranes with specific antibodies against violaxanthin.


1974 ◽  
Vol 29 (11-12) ◽  
pp. 725-732 ◽  
Author(s):  
Robert Bauer ◽  
Mathijs J. G. Wijnands

Abstract The effect of the plastohydroquinone antagonist dibromothym oquinone (DBMIB) on photosynthetic electron transport reactions was studied in the presence and absence of p-phenylene-diamines by means of measurements of prompt and delayed chlorophyll fluorescence induction of the green alga Scenedesm us obliquus. Prompt and delayed chlorophyll fluorescence induction phenomena are valid indicators for the native presence of and cooperation between the two photosynthetic light reactions. Their kinetics reflect the balancing of electron exchange reactions in the chain of coupled redox-systems between the two photosystems upon sudden illumination. From distinct alterations of the short-term (sec) light induced changes in the yield of prom pt and delayed chlorophyll fluorescence it is concluded that DBMIB inhibits the photosynthetic electron transport in the chain of redox-systems between the two light reactions. There is evidence to show that upon illumination of DBMIB treated cells only the reduction of primary electron ac­ceptor pools of photosystem II (i. e. Q and PQ) is still possible. After their reduction the further electron transport through photosystem II is blocked. The addition of p-phenylenediamines to DBM IB-treated cells abolishes the typical DBMIB-affected prom pt and delayed fluorescence inhibition curves and the normal induction curves re­ appear qualitatively in all their important features. From these measurements it is suggested that the redox properties of p-phenylenediamines allow an electron transport bypass of the DBMIB inhibition site which results in a fully restored photosynthetic electron transport from water to NADP.


2007 ◽  
Vol 34 (11) ◽  
pp. 1038 ◽  
Author(s):  
Li-Song Chen ◽  
Lailiang Cheng

To determine whether the sun-exposed peel of apple fruit has a higher photosynthetic capacity than the shaded peel, fruit peel samples were taken in both early July and early September from the exterior part of the canopy of mature ‘Liberty’/M.9 trees for measuring oxygen evolution, key enzymes and metabolites involved in photosynthesis, and chlorophyll fluorescence. Compared with the shaded peel, the sun-exposed peel had higher light-saturated oxygen evolution rate and higher light saturation point, but lower apparent and true quantum yields. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase, glyceraldehyde-3-phosphate dehydrogenase, phosphoribulokinase, stromal fructose-1,6-bisphosphatase, ADP-glucose pyrophosphorylase and sucrose-phosphate synthase (SPS) were higher in the sun-exposed peel than in the shaded peel on both sampling dates except that no significant difference was found in SPS activity between the two peel types in September. No significant difference was detected in the concentration of key metabolites (G6P, F6P, G1P, and PGA) between the sun-exposed peel and the shaded peel, suggesting that the response of the key enzymes to light exposure is well coordinated. Chlorophyll fluorescence quenching analysis showed that the sun-exposed peel had higher PSII quantum efficiency than the shaded peel at each given PFD, which resulted mainly from the higher photochemical quenching coefficient (qP). The sun-exposed peel had higher thermal dissipation capacity, as indicated by larger NPQ and Fo quenching, than the shaded peel at high PFD. In conclusion, the sun-exposed peel of apple fruit has higher activities of the Calvin cycle enzymes and higher rate of electron transport, leading to higher photosynthetic O2 evolution capacity. It appears that the acclimation of the Calvin cycle activities, thermal dissipation, and electron transport in apple peel are well coordinated in response to light exposure.


Sign in / Sign up

Export Citation Format

Share Document