General Relativistic Jet Formation from Magnetized Accretion Disk Around Black Hole

Author(s):  
S. Koide ◽  
K. Shibata ◽  
T. Kudoh
1997 ◽  
Vol 163 ◽  
pp. 667-671
Author(s):  
Shinji Koide ◽  
Kazunari Shibata ◽  
Takahiro Kudoh

AbstractRecently, superluminal motions are observed not only from active galactic nuclei but also in our Galaxy. These phenomena are explained as relativistic jets propagating almost toward us with Lorentz factor more than 2. For the formation of such a relativistic jet, magnetically driven mechanism around a black hole is most promising. We have extended the 2.5D Newtonian MHD jet model (Shibata & Uchida 1986) to general relativistic regime. For this purpose, we have developed a general relativistic magnetohydrodynamic (GRMHD) numerical code and applied it to the simulation of the magnetized accretion disk around a black hole. We have found the formation of magnetically driven jets with 86 percent of light velocity (i.e. Lorentz factor ~ 2.0).


1998 ◽  
Vol 188 ◽  
pp. 415-416 ◽  
Author(s):  
Shinji Koide ◽  
Kazunari Shibata ◽  
Takahiro Kudoh

The radio jets ejected from active galactic nuclei (AGNs) sometimes show proper motions with apparent velocity exceeding the speed of light. This phenomenon, called superluminal motion, is explained as relativistic jets propagating in a direction almost toward us, and has been thought to be ejected from the close vicinity of hypothetical supermassive black holes powering AGNs (Rees 1996). The magnetic mechanism has been proposed not only for AGN jets (Lovelace 1976; Blandford & Payne 1983) but also for protostellar jets (Pudritz & Norman 1986; Uchida & Shibata 1985; Shibata & Uchida 1986), although no one has yet performed nonsteady general relativistic magnetohydrodynamic (GRMHD) numerical simulations on the formation of jets from the accretion disk around a black hole.


2007 ◽  
Vol 22 (10) ◽  
pp. 1875-1898 ◽  
Author(s):  
ORHAN DÖNMEZ

We investigate the special cases of the formation of shocks in the accretion disks around the nonrotating (Schwarzschild) black holes in cases where one or few stars perturb the disk. We model the structure of disk with a 2D fully general relativistic hydrodynamic code and investigate a variety of cases in which the stars interacting with the disk are captured at various locations. We have found the following results: (1) if the stars perturb the disk at nonsymmetric locations, a moving one-armed spiral shock wave is produced and it destroys the disk eventually; (2) if the disk is perturbed by a single star located close to the black hole, a standing shock wave is produced while the disk becomes an accretion tori; (3) if the disk is perturbed by stars at symmetric locations, moving two-armed spiral shock waves are produced while the disk reaches a steady state; (4) continuous injection of matter into the stable disk produces a standing shock wave behind the black hole. Our outcomes reinforce the view that different perturbations on the stable accretion disk carry out different types of shock waves which produce Quasi-Periodic Oscillation (QPO) phenomena in galactic black hole candidates and it is observed as a X-ray.


1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


2000 ◽  
Vol 536 (2) ◽  
pp. 668-674 ◽  
Author(s):  
Shinji Koide ◽  
David L. Meier ◽  
Kazunari Shibata ◽  
Takahiro Kudoh

2019 ◽  
Vol 623 ◽  
pp. A152 ◽  
Author(s):  
M. Mościbrodzka

Context. Polarimetric observations of black holes allow us to probe structures of magnetic fields and plasmas in strong gravity. Aims. We present a study of the polarimetric properties of a synchrotron spectrum emitted from a relativistic jet using a low-dimensional model. Methods. A novel numerical scheme is used to integrate relativistic polarized radiative transfer equations in a slab geometry where the plasma conditions change along the integration path. Results. We find that the simple model of a non-uniform jet can recover basic observational characteristics of some astrophysical sources with a relativistic jet, such as extremely high rotation measures. Our models incorporate a time-dependent component. A small fluctuation in density or temperature of the plasma along the jet produces significant amounts of fluctuations not only in the fractional linear and circular polarizations, but also in the jet internal rotation measures. Conclusions. The low-dimensional models presented here are developed within the same computational framework as the complex three-dimensional general relativistic magnetohydrodynamics simulations of black hole disks and jets, and they offer guidance when interpreting the results from more complex polarization models. The models presented here are scalable to stationary and transient polarized radio emissions produced by relativistic plasma ejected from around compact objects, in both stellar-mass and supermassive black hole systems.


Sign in / Sign up

Export Citation Format

Share Document