Convective Transport Theory and the Radix Layer

Author(s):  
R. B. Stull
2013 ◽  
Author(s):  
Eric I. Thorsos
Keyword(s):  

2006 ◽  
Vol 258-260 ◽  
pp. 586-591
Author(s):  
António Martins ◽  
Paulo Laranjeira ◽  
Madalena Dias ◽  
José Lopes

In this work the application of delay differential equations to the modelling of mass transport in porous media, where the convective transport of mass, is presented and discussed. The differences and advantages when compared with the Dispersion Model are highlighted. Using simplified models of the local structure of a porous media, in particular a network model made up by combining two different types of network elements, channels and chambers, the mass transport under transient conditions is described and related to the local geometrical characteristics. The delay differential equations system that describe the flow, arise from the combination of the mass balance equations for both the network elements, and after taking into account their flow characteristics. The solution is obtained using a time marching method, and the results show that the model is capable of describing the qualitative behaviour observed experimentally, allowing the analysis of the influence of the local geometrical and flow field characteristics on the mass transport.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1861
Author(s):  
Daniela Calvetti ◽  
Alexander P. Hoover ◽  
Johnie Rose ◽  
Erkki Somersalo

Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two.


Sign in / Sign up

Export Citation Format

Share Document