Mineral Exploration Drilling

Author(s):  
Roger W. Marjoribanks
2013 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
Amir Mokaramian ◽  
Vamegh Rasouli ◽  
Gary Cavanough

Basic design methodology for a new small multistage Turbodrill (turbine down hole motor) optimized for small size Coiled Tube (CT) Turbodrilling system for deep hard rocks mineral exploration drilling is presented. Turbodrill is a type of axial turbomachinery which has multistage of stators and rotors. It converts the hydraulic power provided by the drilling fluid (pumped from surface) to mechanical power through turbine motor. For the first time, new small diameter (5-6 cm OD) water Turbodrill with high optimum rotation speed of higher than 2,000 revolutions per minute (rpm) were designed through comprehensive numerical simulation analyses. The results of numerical simulations (Computational Fluid Dynamics (CFD)) for turbodrill stage performance analysis with asymmetric blade’s profiles on stator and rotor, with different flow rates and rotation speeds are reported. This follows by Fluid-Structural Interaction (FSI) analyses for this small size turbodrill in which the finite element analyses of the stresses are performed based on the pressure distributions calculated from the CFD modeling. As a result, based on the sensitivity analysis, optimum operational and design parameters are proposed for gaining the required rotation speed and torque for hard rocks drilling.


Author(s):  
Anna A. Prokhorova ◽  
Olga I. Odintsova ◽  
Ekaterina O. Avakova ◽  
Victoria А. Kuzmenko

The professional clothing with a repellent finish becomes necessary in the modern world. It is used for foresters, geologists, rescue workers, firefighters, military, personnel of mineral exploration, drilling and gas fields, etc. Clothing with a repellent finish as prophylactic in periods of tick-borne encephalitis epidemics becomes especially relevant. The purpose of the study was to develop a technology of textile materials permanent repellent finishing by means of oppositely charged poly electrolytes. The cotton and cotton- polyester textile materials with surface density from 123 to 350 g/m2, previously prepared for the repellent finishing, were served as a research object. The  polydiallyldimethylammonium chloride (PDADMAC) and Akremony were used as a polyelectrolytes. The influence of the polyelectrolytes application sequence on the kinetics of repellent release from textile materials was investigated by means of gas chromatography. Analysis of textile materials repellent finishing technical results showed that the percentage of alfatsipermetrin on fabric, processed according to the proposed technology, remained unchanged after five washings.  Thus, the resulting acaricidal effect is stable to wet treatments. The test of the costumes protective effect with inserts of processed fabric in respect ticks in the natural focus of tick-borne viral encephalitis in the Irkutsk region was carried out. On the basis of completed researches the possible technological schemes of textile materials acaricidal finishing was developed. The obtained results allow recommending the developed technology for imparting of acaricidal properties to textile materials.


Environments ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 84
Author(s):  
Zamzow ◽  
Chambers

There is little information in the literature about the impacts of mineral exploration drilling on natural waters. A copper-gold-molybdenum mining deposit in Alaska was heavily explored until 2012 and partially reclaimed; however, full reclamation of drill sites remained incomplete in 2016. Copper is sub-lethally toxic to salmon, a highly-valued resource in this area. Of 109 sites inspected, 9 sites had confirmed impacts due to un-reclaimed drill-holes or drill waste disposal practices. At seven sites artesian waters at the drill stem resulted in surface water or sediment elevated in aluminum, iron, copper, or zinc with neutral pH. Copper concentrations at artesian sites were <0.4, 0.7, 2, 7, 15, 76, and 215 µg/L; the latter four exceed water quality criteria. Drilling waste is known to have been disposed of in ponds and unlined sumps. At one of five ponds sampled, copper declined from 51 to 8 µg/L over nine years. At the one sump area with historical data, copper increased from 0.3 to 1.8 µg/L at a downgradient wetland spring over five years. This research identifies contaminant types and sources and can be used to guide future ecotoxicity studies and improve regulatory oversight.


2020 ◽  
Author(s):  
Valérie Plagnes ◽  
David Quirt ◽  
Antonio Benedicto ◽  
Patrick Ledru

&lt;p&gt;A multidisciplinary approach combining a groundwater hydrogeochemical survey and a 3D groundwater flow model was applied to unconformity-type U mineralization in the Athabasca Basin (Canada), as a new supplementary guide for uranium exploration. This approach was developed at the McClean Lake Operation site (eastern part of the basin), where several uranium deposits have already been mined and others are not yet mined. The goal of ongoing exploration in this area is to find new deposits in the vicinity of known deposits to facilitate possible future mining.&lt;/p&gt;&lt;p&gt;Groundwater levels were measured in 60 wells and groundwater sampling was carried out in 31 of these wells, some of these wells are screened in bedrock below the unconformity and others in sandstones above the unconformity. Among these wells, we included 4 wells located near a known ore body (SABRE sector) to better evaluate the potential of our approach to identify the presence of U mineralization.&lt;/p&gt;&lt;p&gt;The results show that in this study area, the U concentration and saturation index maps are not good indicators of U mineralization as U concentrations are very low for all samples due to the strong reducing conditions. However, 5 of the wells show remarkable geochemical composition: the highest total dissolved solids, high Cl concentration and strong relationships between Cl and concentrations of Na, K, Mg, Ca, Fe as well as Sr and Ba, suggesting that these ions may have come from a common source. Four of these five samples belong to the deposit of the SABRE sector, but the fifth well is located upstream of this region, far from a known ore body. A 3-D groundwater model was developed for the entire basin and the flow path ending at this well screen was traced to its source by reverse particle tracking. In the structure of the groundwater model, graphite-rich fault zones are considered the main geological structures controlling groundwater flows. The up-gradient geochemical plume deciphered from the backflows allows the identification of new exploration targets. This approach appears to be an appropriate method for prioritizing locations for future exploration drilling.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document