Special Features of Conformal Transformation of Current, Energy-Momentum Tensor and Gauge Fields

Author(s):  
Efim S. Fradkin ◽  
Mark Ya. Palchik
2019 ◽  
Vol 100 (12) ◽  
Author(s):  
M. Ballardini ◽  
M. Braglia ◽  
F. Finelli ◽  
G. Marozzi ◽  
A. A. Starobinsky

2020 ◽  
Vol 13 (13) ◽  
pp. 1-4
Author(s):  
S.K. Sharma ◽  
P.R. Dhungel ◽  
U. Khanal

As a continuation of solving the equations governing the perturbation of the Friedmann-Lemaitre-Robertson- Walker (FLRW) space-time in Newman-Penrose formalism, the behaviour of the massive Klein-Gordon (KG) field coupled to the FLRW has been investigated. The Equation of Motion has been written and solved separately for radial and temporal parts. The former solution has come to be in terms of the Gegenbauer polynomials and spherical harmonics and the latter being in the WKB approximation. The particle current, energy momentum tensor and potential have also been obtained.


2021 ◽  
Vol 61 ◽  
pp. 53-78
Author(s):  
Halima Loumi-Fergane ◽  

Elsewhere, we gave the explicit expressions of the multivectors fields associated to infinitesimal symmetries which gave rise to Noether currents for classical field theories and relativistic mechanic using the Second Order Partial Differential Equation SOPDE condition for the Poincar\'e-Cartan form.\\ The main objective of this paper is to reformulate the multivector fields associated to translational and rotational symmetries of the gauge fields in particular those of the electromagnetic field which gave rise to symmetrical and invariant gauge energy-momentum tensor and the orbital angular momentum. The spin angular momentum appears however because of the internal symmetry inside the fiber.


2011 ◽  
Vol 20 (01) ◽  
pp. 77-91 ◽  
Author(s):  
SHAHAB SHAHIDI ◽  
HAMID REZA SEPANGI

Two problems related to dark matter are considered in the context of a braneworld model in which the confinement of gauge fields on the brane is achieved by invoking a confining potential. First, we show that the virial mass discrepancy can be addressed if the conserved geometrical term appearing in this model is considered as an energy–momentum tensor of an unknown type of matter, the so-called X-matter whose equation of state (EoS) is also obtained. Second, the galaxy rotation curves are explained by assuming an anisotropic energy–momentum tensor for the X-matter.


2000 ◽  
Vol 15 (32) ◽  
pp. 1991-2005 ◽  
Author(s):  
A. B. PESTOV ◽  
BIJAN SAHA

The gauge symmetry inherent in the concept of manifold has been discussed. Within the scope of this symmetry the linear connection or displacement field can be considered as a natural gauge field on the manifold. The gauge-invariant equations for the displacement field have been derived. It has been shown that the energy–momentum tensor of this field conserves and hence the displacement field can be treated as one that transports energy and gravitates. To show the existence of the solutions of the field equations, we have derived the general form of the displacement field in Minkowski space–time which is invariant under rotation and space and time inversion. With this ansatz we found spherically-symmetric solutions of the equations in question.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


Sign in / Sign up

Export Citation Format

Share Document