Timescales of Optical Continuum Variability in NGC4151

Author(s):  
N. Solomos ◽  
I. Hatzilau ◽  
A. Mavrogonatos ◽  
M. J. Whitehead ◽  
I. Sahelliou
Keyword(s):  
2021 ◽  
Vol 504 (1) ◽  
pp. 65-88
Author(s):  
Abhijeet Anand ◽  
Dylan Nelson ◽  
Guinevere Kauffmann

ABSTRACT In order to study the circumgalactic medium (CGM) of galaxies we develop an automated pipeline to estimate the optical continuum of quasars and detect intervening metal absorption line systems with a matched kernel convolution technique and adaptive S/N criteria. We process ∼ one million quasars in the latest Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and compile a large sample of ∼ 160 000 Mg ii absorbers, together with ∼ 70 000 Fe ii systems, in the redshift range 0.35 < zabs < 2.3. Combining these with the SDSS DR16 spectroscopy of ∼1.1 million luminous red galaxies (LRGs) and ∼200 000 emission line galaxies (ELGs), we investigate the nature of cold gas absorption at 0.5 < z < 1. These large samples allow us to characterize the scale dependence of Mg ii with greater accuracy than in previous work. We find that there is a strong enhancement of Mg ii absorption within ∼50 kpc of ELGs, and the covering fraction within 0.5rvir of ELGs is 2–5 times higher than for LRGs. Beyond 50 kpc, there is a sharp decline in Mg ii for both kinds of galaxies, indicating a transition to the regime where the CGM is tightly linked with the dark matter halo. The Mg ii-covering fraction correlates strongly with stellar mass for LRGs, but weakly for ELGs, where covering fractions increase with star formation rate. Our analysis implies that cool circumgalactic gas has a different physical origin for star-forming versus quiescent galaxies.


1979 ◽  
Vol 53 ◽  
pp. 334-340 ◽  
Author(s):  
H.S. Stockman ◽  
James Liebert ◽  
Howard E. Bond

Most theoretical models of the AM Her variables (AM Her, AN UMa, W Pup and 2A0311-22) rely on strong cyclotron emission at the fundamental cyclotron frequency and higher harmonics to produce the observed, strongly-polarized optical continuum (e.g. Lamb and Masters 1979). The cyclotron lines, which presumably originate in the hot, isothermal accretion shock at the surface of the white dwarf (kT ≳ 10 keV, h/R* ≲ 0.1), should be blurred into a continuous spectrum by both optical depth effects and electron Doppler broadening. Thus the lack of even weak cyclotron features in the optical spectra of these objects is still compatible with a cyclotron origin.


Author(s):  
Wei-Hsin Sun ◽  
Charlene A. Heisler ◽  
Matthew A. Malkan
Keyword(s):  

Author(s):  
F Pozo Nuñez ◽  
N Gianniotis ◽  
J Blex ◽  
T Lisow ◽  
R Chini ◽  
...  

Abstract We present the results of a two year optical continuum photometric reverberation mapping campaign carried out on the nucleus of the Seyfert-1 galaxy Mrk509. Specially designed narrow-band filters were used in order to mitigate the line and pseudo-continuum contamination of the signal from the broad line region, while allowing for high-accuracy flux-calibration over a large field of view. We obtained light curves with a sub-day time sampling and typical flux uncertainties of 1%. The high photometric precision allowed us to measure inter-band continuum time delays of up to ∼2 days across the optical range. The time delays are consistent with the relation τ∝λ4/3 predicted for an optically thick and geometrically thin accretion disk model. The size of the disk is, however, a factor of 1.8 larger than predictions based on the standard thin-disk theory. We argue that, for the particular case of Mrk509, a larger black hole mass due to the unknown geometry scaling factor can reconcile the difference between the observations and theory.


1987 ◽  
Vol 121 ◽  
pp. 161-167
Author(s):  
B.M. Peterson

Recent observations of spectral variability in active galactic nuclei have established the connection between the broad emission-line and optical continuum flux changes. The inferred size of the broad-line region is at least an order of magnitude smaller than conventional estimates based on photoionization models, which leads to new conclusions about the nature of the broad-line region.


2020 ◽  
Vol 496 (1) ◽  
pp. 138-151 ◽  
Author(s):  
Shruti Badole ◽  
Neal Jackson ◽  
Philippa Hartley ◽  
Dominique Sluse ◽  
Hannah Stacey ◽  
...  

ABSTRACT We present Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimetre Array (ALMA) observations of SDSS J0924+0219, a z = 1.524 radio-quiet lensed quasar with an intrinsic radio flux density of about 3 $\, \mu$Jy. The four lensed images are clearly detected in the radio continuum and the CO(5–4) line, whose centroid is at z = 1.5254 ± 0.0001, with a marginal detection in the submillimetre continuum. The molecular gas displays ordered motion, in a structure approximately 1–2.5 kpc in physical extent, with typical velocities of 50–100 km s−1. Our results are consistent with the radio emission being emitted from the same region, but not with a point source of radio emission. SDSS J0924+0219 shows an extreme anomaly in the flux ratios of the two merging images in the optical continuum and broad emission lines, suggesting the influence of microlensing by stars in the lensing galaxy. We find the flux ratio in the radio, submillimetre continuum and CO lines to be slightly greater than 1 but much less than that in the optical, which can be reproduced with a smooth galaxy mass model and an extended source. Our results, supported by a microlensing simulation, suggest that the most likely explanation for the optical flux anomaly is indeed microlensing.


2020 ◽  
Vol 494 (3) ◽  
pp. 4057-4068
Author(s):  
Mayukh Pahari ◽  
I M McHardy ◽  
Federico Vincentelli ◽  
Edward Cackett ◽  
Bradley M Peterson ◽  
...  

ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.


1968 ◽  
Vol 46 (10) ◽  
pp. S481-S483 ◽  
Author(s):  
Hugh M. Johnson

Recent X-ray detection of the radio and optical sources Cas A (galactic) and Vir A (extra-galactic) provides new ways to relate the continua and line emissions in the spectra. The level of photoionization and the surface brightness of the optical continua are discussed. The apparent detection of part of the optical continuum of Cas A is also discussed.


2015 ◽  
Vol 11 (S320) ◽  
pp. 268-277
Author(s):  
Arkadiusz Berlicki ◽  
Arun Kumar Awasthi ◽  
Petr Heinzel ◽  
Michal Sobotka

AbstractObservations of flare emissions in the optical continuum are very rare. Therefore, the analysis of such observations is useful and may contribute to our understanding of the flaring chromosphere and photosphere. We study the white light continuum emission observed during the X6.9 flare. This emission comes not only from the flare ribbons but also form the nearby plage area. The main aim of this work is to disentangle the flare and plage (facula) emission. We analyzed the spatial, spectral and temporal evolution of the flare and plage properties by analyzing multi-wavelength observations. We study the morphological correlation of the white-light continuum emission observed with different instruments. We found that some active region areas which produce the continuum emission correspond rather to plages than to the flare kernels. We showed that in some cases the continuum emission from the WL flare kernels is very similar to the continuum emission of faculae.


Sign in / Sign up

Export Citation Format

Share Document