scholarly journals VLA and ALMA observations of the lensed radio-quiet quasar SDSS J0924+0219: a molecular structure in a 3 μJy radio source

2020 ◽  
Vol 496 (1) ◽  
pp. 138-151 ◽  
Author(s):  
Shruti Badole ◽  
Neal Jackson ◽  
Philippa Hartley ◽  
Dominique Sluse ◽  
Hannah Stacey ◽  
...  

ABSTRACT We present Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimetre Array (ALMA) observations of SDSS J0924+0219, a z = 1.524 radio-quiet lensed quasar with an intrinsic radio flux density of about 3 $\, \mu$Jy. The four lensed images are clearly detected in the radio continuum and the CO(5–4) line, whose centroid is at z = 1.5254 ± 0.0001, with a marginal detection in the submillimetre continuum. The molecular gas displays ordered motion, in a structure approximately 1–2.5 kpc in physical extent, with typical velocities of 50–100 km s−1. Our results are consistent with the radio emission being emitted from the same region, but not with a point source of radio emission. SDSS J0924+0219 shows an extreme anomaly in the flux ratios of the two merging images in the optical continuum and broad emission lines, suggesting the influence of microlensing by stars in the lensing galaxy. We find the flux ratio in the radio, submillimetre continuum and CO lines to be slightly greater than 1 but much less than that in the optical, which can be reproduced with a smooth galaxy mass model and an extended source. Our results, supported by a microlensing simulation, suggest that the most likely explanation for the optical flux anomaly is indeed microlensing.

1980 ◽  
Vol 5 ◽  
pp. 177-184 ◽  
Author(s):  
J. M. van der Hulst

During the last few years detailed and sensitive observations of the radio emission from the nuclei of many normal spiral galaxies has become available. Observations from the Very Large Array (VLA) of the National Radio Astronomy Observatory (NRAO1), in particular, enable us to distinguish details on a scale of ≤100 pc for galaxies at distances less than 21 Mpc. The best studied nucleus, however, still is the center of our own Galaxy (see Oort 1977 and references therein). Its radio structure is complex. It consists of an extended non-thermal component 200 × 70 pc in size, with embedded therein several giant HII regions and the central source Sgr A (˜9 pc in size). Sgr A itself consists of a thermal source, Sgr A West, located at the center of the Galaxy, and a weaker, non-thermal source, Sgr A East. Sgr A West moreover contains a weak, extremely compact (≤10 AU) source. The radio morphology of several other galactic nuclei is quite similar to that of the Galactic Center, as will be discussed in section 2. Recent reviews of the radio properties of the nuclei of normal galaxies have been given by Ekers (1978a,b) and De Bruyn (1978). The latter author, however, concentrates on galaxies with either active nuclei or an unusual radio morphology. In this paper I will describe recent results from the Westerbork Synthesis Radio Telescope (WSRT, Hummel 1979), the NRAO 3-element interferometer (Carlson, 1977; Condon and Dressel 1978), and the VLA (Heckman et al., 1979; Van der Hulst et al., 1979). I will discuss the nuclear radio morphology in section 2, the luminosities in section 3, and the spectra in section 4. In section 5 I will briefly comment upon the possible implications for the physical processes in the nuclei that are responsible for the radio emission.


2018 ◽  
Vol 616 ◽  
pp. A98 ◽  
Author(s):  
L. Supan ◽  
G. Castelletti ◽  
W. M. Peters ◽  
N. E. Kassim

We have identified a new supernova remnant (SNR), G51.04+0.07, using observations at 74 MHz from the Very Large Array Low-Frequency Sky Survey Redux (VLSSr). Earlier, higher frequency radio continuum, recombination line, and infrared data had correctly inferred the presence of nonthermal radio emission within a larger, complex environment including ionised nebulae and active star formation. However, our observations have allowed us to redefine at least one SNR as a relatively small source (7.′5 × 3′in size) located at the southern periphery of the originally defined SNR candidate G51.21+0.11. The integrated flux density of G51.04+0.07 at 74 MHz is 6.1 ± 0.8 Jy, while its radio continuum spectrum has a slope α = −0.52 ± 0.05 (S v ∝ vα), typical of a shell-type remnant. We also measured spatial variations in the spectral index between 74 and 1400 MHz across the source, ranging from a steeper spectrum (α = −0.50 ± 0.04) coincident with the brightest emission to a flatter component (α = −0.30 ± 0.07) in the surrounding fainter region. To probe the interstellar medium into which the redefined SNR is likely evolving, we have analysed the surrounding atomic and molecular gas using the 21 cm neutral hydrogen (HI) and 13CO(J = 1 − 0) emissions. We found that G51.04+0.07 is confined within an elongated HI cavity and that its radio emission is consistent with the remains of a stellar explosion that occurred ~6300 yr ago at a distance of 7.7 ± 2.3 kpc. Kinematic data suggest that the newly discovered SNR lies in front of HII regions in the complex, consistent with the lack of a turnover in the low frequency continuum spectrum. The CO observations revealed molecular material that traces the central and northern parts of G51.04+0.07. The interaction between the cloud and the radio source is not conclusive and motivates further study. The relatively low flux density (~1.5 Jy at 1400 MHz) of G51.04+0.07 is consistent with this and many similar SNRs lying hidden along complex lines of sight towards inner Galactic emission complexes. It would also not be surprising if the larger complex studied here hosted additional SNRs.


2005 ◽  
Vol 192 ◽  
pp. 3-11
Author(s):  
Schuyler D. Van Dyk ◽  
Kurt W. Weiler ◽  
Richard A. Sramek ◽  
Nino Panagia ◽  
Christopher Stockdale ◽  
...  

SummaryWe review ten years of radio continuum and X-ray monitoring of the Type IIb SN 1993J in M81. The supernova (SN) has been observed continuously, since only a few days after explosion, by our group with the Very Large Array at a number of radio frequencies, as well as by other groups. As a result, it is among the best-studied radio supernovae. The observed synchrotron radio emission is thought to arise from the interaction of the SN shock with the pre-SN wind-established circumstellar medium around the progenitor star. We describe the properties of the circumstellar interaction, based on the more fully-developed dataset, and compare this to our earlier characterization made in 1994. SN 1993J has also been a target of X-ray satellites, and we briefly discuss the nature of the X-ray emission and, together with the radio emission, describe the implications for the nature of the SN’s progenitor.


2019 ◽  
Vol 630 ◽  
pp. A110 ◽  
Author(s):  
V. Ganci ◽  
P. Marziani ◽  
M. D’Onofrio ◽  
A. del Olmo ◽  
E. Bon ◽  
...  

Context. When can an active galactic nucleus (AGN) be considered radio loud (RL)? Following the established view of the AGNs inner workings, an AGN is RL if associated with relativistic ejections emitting a radio synchrotron spectrum (i.e., it is a “jetted” AGN). In this paper we exploit the AGN main sequence that offers a powerful tool to contextualize radio properties. Aims. If large samples of optically-selected quasars are considered, AGNs are identified as RL if their Kellermann’s radio loudness ratio RK >  10. Our aims are to characterize the optical properties of different classes based on radio loudness within the main sequence and to test whether the condition RK >  10 is sufficient for the identification of RL AGNs, since the origin of relatively strong radio emission may not be necessarily due to relativistic ejection. Methods. A sample of 355 quasars was selected by cross-correlating the Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters survey (FIRST) with the twelfth release of the Sloan Digital Sky Survey Quasar Catalog published in 2017. We classified the optical spectra according to their spectral types along the main sequence of quasars. For each spectral type, we distinguished compact and extended morphology (providing a FIRST-based atlas of radio maps in the latter case), and three classes of radio loudness: detected ( specific flux ratio in the g band and at 1.4 GHz, R′K < 10), intermediate (10 ≤ R′K < 70), and RL (R′K ≥ 70). Results. The analysis revealed systematic differences between radio-detected (i.e., radio-quiet), radio-intermediate, and RL classes in each spectral type along the main sequence. We show that spectral bins that contain the extreme Population A sources have radio power compatible with emission by mechanisms ultimately due to star formation processes. RL sources of Population B are characteristically jetted. Their broad Hβ profiles can be interpreted as due to a binary broad-line region. We suggest that RL Population B sources should be preferential targets for the search of black hole binaries, and present a sample of binary black hole AGN candidates. Conclusions. The validity of the Kellermann’s criterion may be dependent on the source location along the quasar main sequence. The consideration of the main sequence trends allowed us to distinguish between sources whose radio emission mechanisms is jetted from the ones where the mechanism is likely to be fundamentally different.


2018 ◽  
Vol 617 ◽  
pp. A52 ◽  
Author(s):  
H. Worpel ◽  
A. D. Schwope ◽  
I. Traulsen ◽  
K. Mukai ◽  
S. Ok

Aims. We aim to confirm whether the eclipsing cataclysmic variable (CV) V902 Mon is an intermediate polar (IP), to characterise its X-ray spectrum and flux, and to refine its orbital ephemeris and spin period. Methods. We performed spectrographic observations of V902 Mon in 2016 with the 2.2 m Calar Alto telescope, and X-ray photometry and spectroscopy with XMM-Newton in October 2017. This data was supplemented by several years of AAVSO visual photometry. Results. We confirmed V902 Mon as an IP based on detecting the spin period, which has a value of 2208 s, at multiple epochs. Spectroscopy of the donor star and Gaia parallax yield a distance of 3.5−0.9+1.3 kpc, suggesting an X-ray luminosity one or two orders of magnitude lower than the 1033 erg s−1 typical of previously known IPs. The X-ray to optical flux ratio is also very low. The inclination of the system is more than 79°, and is most likely a value of around 82°. We have refined the eclipse ephemeris, stable over 14 000 cycles. The Hα line is present throughout the orbital cycle and is clearly present during eclipse, suggesting an origin distant from the white dwarf, and shows radial velocity variations at the orbital period. The amplitude and overall recessional velocity seem inconsistent with an origin in the disc. The XMM-Newton observation reveals a partially absorbed plasma model typical of magnetic CVs, that has a fluorescent iron line at 6.4 keV showing a large equivalent width of 1.4 keV. Conclusions. V902 Mon is an IP, and probably a member of the hypothesized X-ray underluminous class of IPs. It is likely to be a disc accretor, although the radial velocity behaviour of the Hα line remains puzzling. The large equivalent width of the fluorescent iron line, the small FX/Fopt ratio, and the only marginal detection of X-ray eclipses suggests that the X-ray emission arises from scattering.


2021 ◽  
Vol 922 (1) ◽  
pp. 17
Author(s):  
Bunyo Hatsukade ◽  
Nozomu Tominaga ◽  
Tomoki Morokuma ◽  
Kana Morokuma-Matsui ◽  
Yuichi Matsuda ◽  
...  

Abstract We present the results of 3 GHz radio continuum observations of 23 superluminous supernovae (SLSNe) and their host galaxies by using the Karl G. Jansky Very Large Array conducted 5–21 yr after the explosions. The sample consists of 15 Type I and 8 Type II SLSNe at z < 0.3, providing one of the largest samples of SLSNe with late-time radio data. We detected radio emission from one SLSN (PTF10hgi) and five hosts with a significance of >5σ. No time variability is found in late-time radio light curves of the radio-detected sources in a timescale of years except for PTF10hgi, whose variability is reported in a separate study. Comparison of star formation rates (SFRs) derived from the 3 GHz flux densities with those derived from SED modeling based on UV–NIR data shows that four hosts have an excess of radio SFRs, suggesting obscured star formation. Upper limits for undetected hosts and stacked results show that the majority of the SLSN hosts do not have a significant obscured star formation. By using the 3 GHz upper limits, we constrain the parameters for afterglows arising from interaction between initially off-axis jets and circumstellar medium (CSM). We found that the models with higher energies (E iso ≳ several × 1053 erg) and CSM densities (n ≳ 0.01 cm−3) are excluded, but lower energies or CSM densities are not excluded with the current data. We also constrained the models of pulsar wind nebulae powered by a newly born magnetar for a subsample of SLSNe with model predictions in the literature.


2019 ◽  
Vol 622 ◽  
pp. A21 ◽  
Author(s):  
D. N. Hoang ◽  
T. W. Shimwell ◽  
R. J. van Weeren ◽  
H. J. A. Röttgering ◽  
A. Botteon ◽  
...  

Context. Collisions of galaxy clusters generate shocks and turbulence in the intra-cluster medium (ICM). The presence of relativistic particles and magnetic fields is inferred through the detection of extended synchrotron radio sources such as haloes and relics and implies that merger shocks and turbulence are capable of (re-)accelerating particles to relativistic energies. However, the precise relationship between merger shocks, turbulence, and extended radio emission is still unclear. Studies of the most simple binary cluster mergers are important to help understand the particle acceleration in the ICM. Aims. Our main aim is to study the properties of the extended radio emission and particle acceleration mechanism(s) associated with the generation of relativistic particles in the ICM. Methods. We measure the low-frequency radio emission from the merging galaxy cluster Abell 2146 with LOFAR at 144 MHz. We characterize the spectral properties of the radio emission by combining these data with data from archival Giant Metrewave Radio Telescope (GMRT) at 238 MHz and 612 MHz and Very Large Array (VLA) at 1.5 GHz. Results. We observe extended radio emission at 144 MHz behind the NW and SE shocks. Across the NW extended source, the spectral index steepens from −1.06 ± 0.06 to −1.29 ± 0.09 in the direction of the cluster centre. This spectral behaviour suggests that a relic is associated with the NW upstream shock. The precise nature of the SE extended emission is unclear. It may be a radio halo bounded by a shock or a superposition of a relic and halo. At 144 MHz, we detect a faint emission that was not seen with high-frequency observations, implying a steep (α <  −1.3) spectrum nature of the bridge emission. Conclusions. Our results imply that the extended radio emission in Abell 2146 is probably associated with shocks and turbulence during cluster merger. The relativistic electrons in the NW and SE may originate from fossil plasma and thermal electrons, respectively.


2020 ◽  
Vol 494 (2) ◽  
pp. 1531-1538
Author(s):  
A Moranchel-Basurto ◽  
P F Velázquez ◽  
G Ares de Parga ◽  
E M Reynoso ◽  
E M Schneiter ◽  
...  

ABSTRACT We have performed 3D magnetohydrodynamics (MHD) numerical simulations with the aim of exploring the scenario in which the initial mass distribution of a supernova (SN) explosion is anisotropic. The purpose is to analyse if this scenario can also explain the radio-continuum emission and the expansion observed in young supernova remnants (SNRs). To study the expansion, synthetic polarized synchrotron emission maps were computed from the MHD simulations. We found a good agreement (under a number of assumptions) between this expansion study and previous observational results applied to Tycho’s SNR, which represents a good example of asymmetric young SNRs. Additionally, both the observed morphology and the brightness distribution are qualitatively reproduced.


Author(s):  
Paula Benaglia ◽  
Santiago del Palacio ◽  
Christopher Hales ◽  
Marcelo E Colazo

Abstract We present a deep radio-polarimetric observation of the stellar bow shock EB27 associated to the massive star BD+43○3654. This is the only stellar bow shock confirmed to have non-thermal radio emission. We used the Jansky Very Large Array in S band (2–4 GHz) to test whether this synchrotron emission is polarised. The unprecedented sensitivity achieved allowed us to map even the fainter regions of the bow shock, revealing that the more diffuse emission is steeper and the bow shock brighter than previously reported. No linear polarisation is detected in the bow shock above 0.5%, although we detected polarised emission from two southern sources, probably extragalactic in nature. We modeled the intensity and morphology of the radio emission to better constrain the magnetic field and injected power in relativistic electrons. Finally, we derived a set of more precise parameters for the system EB27–BD+43○3654 using Gaia Early Data Release 3, including the spatial velocity. The new trajectory, back in time, intersects the core of the Cyg OB2 association.


2018 ◽  
Vol 14 (S344) ◽  
pp. 255-258
Author(s):  
Volker Heesen ◽  
Aritra Basu ◽  
Elias Brinks ◽  
George Heald ◽  
Andrew Fletcher ◽  
...  

AbstractLow-mass dwarf irregular galaxies are subject to outflows, in which cosmic rays may play a very important role; they can be traced via their electron component, the cosmic ray electrons (CRe), in the radio continuum as non-thermal synchrotron emission. With the advent of sensitive low-frequency observations, such as with the Low-Frequency Array (LOFAR), we can trace CRe far away from star formation sites. Together with GHz-observations, such as with the Very Large Array (VLA), we can study spatially resolved radio continuum spectra at matched angular resolution and sensitivity. Here, we present results from our 6-GHz VLA survey of 40 nearby dwarf galaxies and our LOFAR study of the nearby starburst dwarf irregular galaxy IC 10. We explore the relation of RC emission with star formation tracers and study in IC 10 the nature of a low-frequency radio halo, which we find to be the result of a galactic wind.


Sign in / Sign up

Export Citation Format

Share Document