Systemic Acquired Resistance in Tobacco: Use of Transgenic Expression to Study the Functions of Pathogenesis-Related Proteins

Author(s):  
Danny Alexander ◽  
Christopher Glascock ◽  
Julie Pear ◽  
Jeffrey Stinson ◽  
Patricia Ahl-Goy ◽  
...  
2014 ◽  
Vol 20 (1-2) ◽  
Author(s):  
A. Ezzat ◽  
Z. Szabó ◽  
J. Nyéki

Systemic acquired resistance (SAR) is a mechanism of induced defense that confers long-lasting protection against a broad spectrum of microorganisms. Salicylic acid (SA) is the signal molecule which is required for induce SAR and is associated with accumulation of pathogenesis-related proteins, which are thought to contribute to resistance. SA paly vital role in some related resistance gene expression in plant cell which have direct or indirect effect on pathogen growth as SA has direct toxicity for pathogen and in the same time has stimulation effect for some enzyme related to reduce the oxidative burst.


2018 ◽  
Vol XI ◽  
pp. 21-30
Author(s):  
Emilia Wilmowicz ◽  
Agata Kućko ◽  
Jan Kopcewicz

This paper presents a comprehensive study on the mechanisms of tree responses to pathogens. We describe natural resistance concerning the presence of different types of barriers protecting plants from invasion and also give them strength after a pathogen attack. We put emphasis on induced resistance functioning both locally and systemically and involvement of phytohormones signaling networks. Systemic acquired resistance (SAR) involved the action of salicylic acid and H202 and accumulation of pathogenesis-related proteins. In turn, jasmonates and ethylene are signaling molecules in the induced resistance (SIR). All these substances play a crucial role in the forest management and can be applied in the tree protection strategies based on the natural and synthetic active compounds.


2021 ◽  
Vol 13 (1) ◽  
pp. 301-307
Author(s):  
Astha ◽  
P. S. Sekhon

In India, Brassica is attacked by many bacterial, fungal and viral pathogens causing various diseases among which, downy mildew caused by Hyaloperonospora brassicae, an oomycete is the most severe one.  The present investigation was conducted to reduce fungicide load on Brassica by testing an alternate method of disease control.  Different Systemic Acquired Resistance (SAR) compounds were tested as foliar sprays like Salicylic acid, Jasmonic acid and Bion (Benzothiadiazole-BTH) for inducing resistance in different genotypes of Raya (Brassica juncea) against downy mildew pathogen. Protein content in plants ranged between 43.5 to 57.7 mg/g fresh weight compared to 37.2 mg/g fresh weight in control. Induction of proteins and defense related enzymes was systemic in nature. The SAR compounds also surged the levels of defense related proteins, i.e. Polyphenol oxidase (PPO), Phenylalanine ammonia lyase (PAL) and pathogenesis related Pr- proteins i.e. ?-1,3 glucanase, Peroxidase (POD),  from 21 to 130 per cent indicating induction of resistance. Protein profiling of treated Brassica plants was also done electrophoreticaly, which further confirmed the induction of pathogenesis-related proteins ranging from 15- 75 kDa along with some other proteins. Salicylic acid @ 500µM showed best results with 71.27 per cent disease control followed by Jasmonic acid with 69.6 per cent; whereas both, Bion and ?eta amino butyric acid gave almost 63 per cent disease control as compared to control plants. Integration of disease tolerance in Brassica varieties/genotypes combined with prophylactic spray of salicylic acid proved to be very economical for managing downy mildew disease.


2007 ◽  
Vol 97 (7) ◽  
pp. 794-802 ◽  
Author(s):  
Shobha D. Potlakayala ◽  
Darwin W. Reed ◽  
Patrick S. Covello ◽  
Pierre R. Fobert

Systemic acquired resistance (SAR) is an induced defense response that confers long-lasting protection against a broad range of microbial pathogens. Here we show that treatment of Brassica napus plants with the SAR-inducing chemical benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) significantly enhanced resistance against virulent strains of the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Leptosphaeria maculans. Localized preinoculation of plants with an avirulent strain of P. syringae pv. maculicola also enhanced resistance to these pathogens but was not as effective as BTH treatment. Single applications of either SAR-inducing pretreatment were effective against P. syringae pv. maculicola, even when given more than 3 weeks prior to the secondary challenge. The pretreatments also led to the accumulation of pathogenesis-related (PR) genes, including BnPR-1 and BnPR-2, with higher levels of transcripts observed in the BTH-treatment material. B. napus plants expressing a bacterial salicylate hydroxylase transgene (NahG) that metabolizes salicylic acid to catechol were substantially compromised in SAR and accumulated reduced levels of PR gene transcripts when compared with untransformed controls. Thus, SAR in B. napus displays many of the hallmarks of classical SAR including long lasting and broad host range resistance, association with PR gene activation, and a requirement for salicylic acid.


1991 ◽  
Vol 10 (2) ◽  
pp. 123-150 ◽  
Author(s):  
Huub J.M. Linthorst ◽  
L.C. Van Loon

Sign in / Sign up

Export Citation Format

Share Document