Problems in reservoir trophic-state classification and implications for reservoir management

Author(s):  
O. T. Lind ◽  
T. T. Terrell ◽  
B. L. Kimmel
2014 ◽  
Vol 955-959 ◽  
pp. 1098-1102 ◽  
Author(s):  
Huan Yang ◽  
Rui Hong Yu ◽  
Rui Hong Guo ◽  
Yun Hao ◽  
Yu Jin Zhang

Eutrophication has led to severe water quality problems in aquatic ecosystems throughout the world. The assessment of trophic status for lakes may provide important and fundamental information for trophic state classification and eutrophication control. This paper assesses and analyzes the classification of eutrophication using three different methods in Wuliangsuhai Lake. The aim is to provide the reference for water quality improvement and aquatic environmental protection of the lake in arid area.


1983 ◽  
Vol 40 (10) ◽  
pp. 1713-1718 ◽  
Author(s):  
Daniel E. Canfield Jr. ◽  
Kenneth A. Langeland ◽  
Michael J. Maceina ◽  
William T. Haller ◽  
Jerome V. Shireman ◽  
...  

We developed an approach for assessing the trophic status of lakes having growths of aquatic macrophytes because conventional criteria for classifying trophic state emphasize conditions in the open water and ignore the nutrients, plant biomass, and production associated with macrophytes. We propose that a potential water column nutrient concentration be determined through adding the nutrients contained in macrophytes to those in the water. Potential nutrient concentrations can be used in existing indices to classify lake trophic status. This approach permits a first approximation of the potential impact of macrophytes on lake trophic state.


2020 ◽  
pp. 1-12
Author(s):  
Hu Jingchao ◽  
Haiying Zhang

The difficulty in class student state recognition is how to make feature judgments based on student facial expressions and movement state. At present, some intelligent models are not accurate in class student state recognition. In order to improve the model recognition effect, this study builds a two-level state detection framework based on deep learning and HMM feature recognition algorithm, and expands it as a multi-level detection model through a reasonable state classification method. In addition, this study selects continuous HMM or deep learning to reflect the dynamic generation characteristics of fatigue, and designs random human fatigue recognition experiments to complete the collection and preprocessing of EEG data, facial video data, and subjective evaluation data of classroom students. In addition to this, this study discretizes the feature indicators and builds a student state recognition model. Finally, the performance of the algorithm proposed in this paper is analyzed through experiments. The research results show that the algorithm proposed in this paper has certain advantages over the traditional algorithm in the recognition of classroom student state features.


2010 ◽  
Vol 130 (3) ◽  
pp. 420-427 ◽  
Author(s):  
Kazuhiro Tamura ◽  
Takamasa Shimada ◽  
Yoichi Saito

2007 ◽  
Vol 43 (5) ◽  
pp. 87-90 ◽  
Author(s):  
Ye. V. Tekanova ◽  
T. M. Timakova

2017 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Kusuma Wardani Laksitaningrum ◽  
Wirastuti Widyatmanti

<p align="center"><strong>ABSTRAK</strong></p><p class="abstrak">Waduk Gajah Mungkur (WGM) adalah bendungan buatan yang memiliki luas genangan maksimum 8800 ha, terletak di Desa Pokoh Kidul, Kecamatan Wonogiri, Kabupaten Wonogiri. Kondisi perairan WGM dipengaruhi oleh faktor klimatologis, fisik, dan aktivitas manusia yang dapat menyumbang nutrisi sehingga mempengaruhi status trofiknya. Tujuan dari penelitian ini adalah mengkaji kemampuan citra Landsat 8 OLI untuk memperoleh parameter-parameter yang digunakan untuk menilai status trofik, menentukan dan memetakan status trofik yang diperoleh dari citra Landsat 8 OLI, dan mengevaluasi hasil pemetaan dan manfaat citra penginderaan jauh untuk identifikasi status trofik WGM. Identifikasi status trofik dilakukan berdasarkan metode <em>Trophic State Index</em> (TSI) Carlson (1997) menggunakan tiga parameter yaitu kejernihan air, total fosfor, dan klorofil-a. Model yang diperoleh berdasar pada rumus empiris dari hasil uji regresi antara pengukuran di lapangan dan nilai piksel di citra Landsat 8 OLI. Model dipilih berdasarkan nilai koefisien determinasi (R<sup>2</sup>) tertinggi. Hasil penelitian merepresentasikan bahwa nilai R<sup>2</sup> kejernihan air sebesar 0,813, total fosfor sebesar 0,268, dan klorofil-a sebesar 0,584. Apabila nilai R<sup>2 </sup>mendekati 1, maka semakin baik model regresi dapat menjelaskan suatu parameter status trofik. Berdasarkan hasil kalkulasi diperoleh distribusi yang terdiri dari kelas eutrofik ringan, eutrofik sedang, dan eutrofik berat yaitu pada rentang nilai indeks 50,051 – 80,180. Distribusi terbesar adalah eutrofik sedang. Hal tersebut menunjukkan tingkat kesuburan perairan yang tinggi dan dapat membahayakan makhluk hidup lain.</p><p><strong>Kata kunci: </strong>Waduk Gajah Mungkur, citra Landsat 8 OLI, regresi, TSI, status trofik</p><p class="judulABS"><strong>ABSTRACT</strong></p><p class="Abstrakeng">Gajah Mungkur Reservoir is an artificial dam that has a maximum inundated areas of 8800 ha, located in Pokoh Kidul Village, Wonogiri Regency. The reservoir’s water conditions are affected by climatological and physical factors, as well as human activities that can contribute to nutrients that affect its trophic state. This study aimed to assess the Landsat 8 OLI capabilities to obtain parameters that are used to determine its trophic state, identifying and mapping the trophic state based on parameters derived from Landsat 8 OLI, and evaluating the results of the mapping and the benefits of remote sensing imagery for identification of its trophic state. Identification of trophic state is based on Trophic State Index (TSI) Carlson (1997), which uses three parameters there are water clarity, total phosphorus, and chlorophyll-a. The model is based on an empirical formula of regression between measurements in the field and the pixel values in Landsat 8 OLI. Model is selected on the highest value towards coefficient of determination (R<sup>2</sup>). The results represented that R<sup>2</sup> of water clarity is 0.813, total phosphorus is 0.268, and chlorophyll-a is 0.584. If R<sup>2</sup> close to 1, regression model will describe the parameters of the trophic state better. Based on the calculation the distribution consists of mild eutrophic, moderate eutrophic, and heavy eutrophic that has index values from 50.051 to 80.18. The most distribution is moderate eutrophication, and it showed the high level of trophic state and may harm other living beings.</p><p><strong><em>Keywords: </em></strong><em>Gajah Mungkur Reservoir, </em><em>L</em><em>andsat 8 OLI satellite imagery, regression, TSI, trophic state</em></p>


Sign in / Sign up

Export Citation Format

Share Document