A New Approach to the 2D Transient Rolling Contact Problem

Author(s):  
J. A. Gonzalez ◽  
R. Abascal
2016 ◽  
Vol 33 (4) ◽  
pp. 1033-1050 ◽  
Author(s):  
Xin Zhao ◽  
Zili Li

Purpose – The purpose of this paper is to develop a numerical approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Design/methodology/approach – A three dimensional (3D) transient FE model is developed in elasticity by the explicit finite element method. Contact solutions with a velocity dependent friction law are compared in detail to those with the Coulomb’s friction law (i.e. a constant coefficient of friction). Findings – The FE solutions confirm the negligible influence of the dependence on the normal contact. Hence, analysis is focussed on the tangential solutions under different friction exploitation levels. In the trailing part of the contact patch where micro-slip occurs, very high-frequency oscillations are excited in the tangential plane by the velocity dependent friction. This is similar to the non-uniform sliding or tangential oscillations observed in sliding contact. Consequently, the micro-slip distribution varies greatly with time. However, the surface shear stress distribution is quite stable at different instants, even though it significantly changes with the employed friction model. Originality/value – This paper proposes an approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Such a problem was usually solved in the literature by the simplified contact algorithms, with which detailed contact solutions could not be obtained, or with the assumption of steady rolling.


2000 ◽  
Vol 68 (4) ◽  
pp. 589-595 ◽  
Author(s):  
D. L. Chertok ◽  
J. M. Golden ◽  
G. A. C. Graham

The problem of a smooth rigid indentor under variable loading moving across a viscoelastic half-space in one direction with variable speed is considered. The motion is assumed to be frictionless and the standard linear model is adopted to describe the viscoelastic material response. An integral equation is derived and a numerical algorithm for its solution subject to appropriate subsidiary conditions is constructed. The contact interval length, pressure, and coefficient of hysteretic friction are presented and the results discussed.


Lubricants ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 58 ◽  
Author(s):  
Nicola Menga ◽  
Francesco Bottiglione ◽  
Giuseppe Carbone

In this paper, we study the steady-state rolling contact of a linear viscoelastic layer of finite thickness and a rigid indenter made of a periodic array of equally spaced rigid cylinders. The viscoelastic contact model is derived by means of Green’s function approach, which allows solving the contact problem with the sliding velocity as a control parameter. The contact problem is solved by means of an accurate numerical procedure developed for general two-dimensional contact geometries. The effect of geometrical quantities (layer thickness, cylinders radii, and cylinders spacing), material properties (viscoelastic moduli, relaxation time) and operative conditions (load, velocity) are all investigated. Physical quantities typical of contact problems (contact areas, deformed profiles, etc.) are calculated and discussed. Special emphasis is dedicated to the viscoelastic friction force coefficient and to the energy dissipated per unit time. The discussion is focused on the role played by the deformation localized at the contact spots and the one in the bulk of the thin layer, due to layer bending. The model is proposed as an accurate solution for engineering applications such as belt conveyors, in which the energy dissipated on the rolling contact of idle rollers can, in some cases, be by far the most important contribution to their energy consumption.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Aditya A. Walvekar ◽  
Neil Paulson ◽  
Farshid Sadeghi ◽  
Nick Weinzapfel ◽  
Martin Correns ◽  
...  

Large bearings employed in wind turbine applications have half-contact widths that are usually greater than 1 mm. Previous numerical models developed to investigate rolling contact fatigue (RCF) require significant computational effort to study large rolling contacts. This work presents a new computationally efficient approach to investigate RCF life scatter and spall formation in large bearings. The modeling approach incorporates damage mechanics constitutive relations in the finite element (FE) model to capture fatigue damage. It utilizes Voronoi tessellation to account for variability occurring due to the randomness in the material microstructure. However, to make the model computationally efficient, a Delaunay triangle mesh was used in the FE model to compute stresses during a rolling contact pass. The stresses were then mapped onto the Voronoi domain to evaluate the fatigue damage that leads to the formation of surface spall. The Delaunay triangle mesh was dynamically refined around the damaged elements to capture the stress concentration accurately. The new approach was validated against previous numerical model for small rolling contacts. The scatter in the RCF lives and the progression of fatigue spalling for large bearings obtained from the model show good agreement with experimental results available in the open literature. The ratio of L10 lives for different sized bearings computed from the model correlates well with the formula derived from the basic life rating for radial roller bearing as per ISO 281. The model was then extended to study the effect of initial internal voids on RCF life. It was found that for the same initial void density, the L10 life decreases with the increase in the bearing size.


2016 ◽  
Vol 228 (2) ◽  
pp. 447-464 ◽  
Author(s):  
Y. Alinia ◽  
H. Zakerhaghighi ◽  
S. Adibnazari ◽  
M. A. Güler

Author(s):  
Jiayin Li ◽  
James R. Barber

Numerical integration has been widely used in commercial FEA software to solve transient problems. However, for the large-scale inhomogeneous thermoelastic contact problem (ITEC), this method is found to be extremely computation-intensive. This paper introduces a new approach to solve the ITEC transient problem with much lower computational complexity. The method is based on the transient modal analysis (TMA) method in conjunction with the fast speed expansion (FSE) method. The TMA method is used to obtain the inhomogeneous transient solution by expressing the solution in modal coordinates, corresponding to eigenfunctions of the homogeneous (unloaded) problem. If the sliding speed is constant, the eigenfunctions can be found by one run of the commercial software program ‘HotSpotter’. However, if the speed varies, the eigenfunctions change and numerous runs of HotSpotter are needed, making the method computationally inefficient. However, the FSE method employs an efficient algorithm to interpolate and expand the eigenfunctions and eigenvalues over a range of speeds. This reduces the number of eigenvalue solutions required and results in a significant reduction in computation time. The method is illustrated with application to an axisymmetric transmission clutch problem.


Author(s):  
V. Roda-Casanova ◽  
F. Sanchez-Marin ◽  
J. L. Iserte

Gear misalignments originate unwanted uneven load distributions that increase contact pressures and the bending stresses, reducing the service life of gear drives. Therefore, it is very important to take into account the misalignments in the determination of contact pressures when designing a gear transmission. Some of these misalignments are related to manufacturing and assembly errors, but others are produced by the deformation of the shafts when power is transmitted. These deformations cause misalignment of the gears, modifying the contact bearing and the pressure distribution, which modifies the deformation of the shafts, leading to a coupled problem not always easy to solve. In this work, a new approach to solve this problem is proposed, based on an iterative algorithm which uncouples the determination of the deformation of the shafts from the contact problem. The proposed approach has been tested through various configurations of spur gear drives. The obtained results are compared with those obtained using a finite element model, showing a good correlation between them, but with a significant reduction of the computational cost.


Sign in / Sign up

Export Citation Format

Share Document