Deformation Mode Selection and Orthonormalization for an Efficient Simulation of the Rolling Contact Problem

Author(s):  
Karim Sherif ◽  
Wolfgang Witteveen
Lubricants ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 58 ◽  
Author(s):  
Nicola Menga ◽  
Francesco Bottiglione ◽  
Giuseppe Carbone

In this paper, we study the steady-state rolling contact of a linear viscoelastic layer of finite thickness and a rigid indenter made of a periodic array of equally spaced rigid cylinders. The viscoelastic contact model is derived by means of Green’s function approach, which allows solving the contact problem with the sliding velocity as a control parameter. The contact problem is solved by means of an accurate numerical procedure developed for general two-dimensional contact geometries. The effect of geometrical quantities (layer thickness, cylinders radii, and cylinders spacing), material properties (viscoelastic moduli, relaxation time) and operative conditions (load, velocity) are all investigated. Physical quantities typical of contact problems (contact areas, deformed profiles, etc.) are calculated and discussed. Special emphasis is dedicated to the viscoelastic friction force coefficient and to the energy dissipated per unit time. The discussion is focused on the role played by the deformation localized at the contact spots and the one in the bulk of the thin layer, due to layer bending. The model is proposed as an accurate solution for engineering applications such as belt conveyors, in which the energy dissipated on the rolling contact of idle rollers can, in some cases, be by far the most important contribution to their energy consumption.


2016 ◽  
Vol 228 (2) ◽  
pp. 447-464 ◽  
Author(s):  
Y. Alinia ◽  
H. Zakerhaghighi ◽  
S. Adibnazari ◽  
M. A. Güler

2016 ◽  
Vol 33 (4) ◽  
pp. 1033-1050 ◽  
Author(s):  
Xin Zhao ◽  
Zili Li

Purpose – The purpose of this paper is to develop a numerical approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Design/methodology/approach – A three dimensional (3D) transient FE model is developed in elasticity by the explicit finite element method. Contact solutions with a velocity dependent friction law are compared in detail to those with the Coulomb’s friction law (i.e. a constant coefficient of friction). Findings – The FE solutions confirm the negligible influence of the dependence on the normal contact. Hence, analysis is focussed on the tangential solutions under different friction exploitation levels. In the trailing part of the contact patch where micro-slip occurs, very high-frequency oscillations are excited in the tangential plane by the velocity dependent friction. This is similar to the non-uniform sliding or tangential oscillations observed in sliding contact. Consequently, the micro-slip distribution varies greatly with time. However, the surface shear stress distribution is quite stable at different instants, even though it significantly changes with the employed friction model. Originality/value – This paper proposes an approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Such a problem was usually solved in the literature by the simplified contact algorithms, with which detailed contact solutions could not be obtained, or with the assumption of steady rolling.


Author(s):  
S Reina ◽  
D A Hills ◽  
D Dini

The contact problem of a driving tyred wheel, pressed and rolling over an elastically similar half-plane, is considered. Although applicable to a wide range of shrink-fitted assemblies, the simplified model is solved to study the practical case of an elastically similar steel tyre mounted on a locomotive steel wheel subjected to tractive rolling. The behaviour of the system at the tyre—substrate interface is studied using closed-form solutions to calculate the state of stress within the tyre. Conditions leading to incipient slip and/or plasticity are identified and mapped for different loads and geometries.


2014 ◽  
Vol 618 ◽  
pp. 73-98 ◽  
Author(s):  
Luis Rodríguez-Tembleque ◽  
M.H. Aliabadi ◽  
R. Abascal

Wear is present in all mechanical interface interaction problems –contact, fretting, orrolling-contact–, and it is one of the main reasons for inoperability in mechanical components. Thepresented work is a review of recent research carried out by the authors [1, 2, 3]. A boundary-element-based methodology to compute anisotropic wear on 3D contact, fretting, or rolling-contact conditionsis presented. Damage on the geometries of the solids and the contact pressures evolution under or-thotropic tribological properties can be predicted using this contact framework, where the formulationuses the Boundary Element Method to compute the elastic inuence coefcients. Contact problem isbased on an Augmented Lagrangian formulation, and restrictions fullment is established by a set ofprojection functions. The boundary element anisotropic wear formulation presented is illustrated withsome examples, in which some studies about the inuence of anisotropic wear on contact variablesevolution are shown.


2002 ◽  
Author(s):  
Jun Zhang ◽  
Yingxi Liu ◽  
Changhua Wu

Using the finite element parametric quadratic programming method, computation of Elastic and Elastic-plastic rolling contact problems between wheel and rail is carried out for various cases such as different wheel diameters, different axle loads, different tractive force and different friction factors. The contact states and the contact internal force between wheel and rail are obtained, and their changing laws corresponding with every above-mentioned parameter are analyzed in this paper.


Sign in / Sign up

Export Citation Format

Share Document