The Cosmic Ray Nucleonic Component: The Invention and Scientific Uses of the Neutron Monitor

Author(s):  
John A. Simpson
2019 ◽  
Vol 5 (3) ◽  
pp. 54-58
Author(s):  
Анна Луковникова ◽  
Anna Lukovnikova ◽  
Виктор Алешков ◽  
Viktor Aleshkov ◽  
Алексей Лысак ◽  
...  

During three summer months in 2015, the Cosmic Ray (CR) station Irkutsk-3000, located at 3000 m above sea level, measured the CR neutron component intensity with the 6NM64 neutron monitor, as well as the atmospheric electric field strength and the level of electromagnetic interference during lightning discharges. It is shown that the level of electromagnetic interference, when registered during lightning discharges, depends considerably on the fixed level of signal discrimination. During observations, we observed no effects of thunderstorm discharges at the neutron monitor count rate at the CR station Irkutsk-3000.


2003 ◽  
Vol 21 (6) ◽  
pp. 1295-1302 ◽  
Author(s):  
A. V. Belov ◽  
E. A. Eroshenko ◽  
B. Heber ◽  
V. G. Yanke ◽  
A. Raviart ◽  
...  

Abstract. Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET) measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.Key words. Interplanetary physics (cosmic rays; energetic particles) – Space plasma physics (charged particle motion and acceleration)


1965 ◽  
Vol 35 (1) ◽  
pp. 23-35 ◽  
Author(s):  
F. Bachelet ◽  
P. Balata ◽  
E. Dyring ◽  
N. Iucci

1969 ◽  
Vol 47 (19) ◽  
pp. 2057-2065 ◽  
Author(s):  
H. Carmichael ◽  
M. A. Shea ◽  
R. W. Peterson

A 3-NM-64 neutron monitor and a 2-MT-64 muon monitor were operated at 29 sites near sea level and on mountains on the western seaboard of the USA and in Hawaii in May, June, and July, 1966, in continuation of the latitude survey begun in 1965 and reported in papers I and II of this set of five papers. The original results and also the corrections for temperature structure of the atmosphere and for secular variations of the cosmic radiation are given in detail. While the overland equipment was at its highest altitude on Mt. Hood (2.4 GV) and on the summits of Mt. Palomar (5.7 GV) and Mt. Haleakela (13.3 GV), an airborne neutron monitor was operated at seven different levels between 3000 m and 12 000 m. The pressure-measuring equipment and also the neutron monitor in the aircraft were calibrated in terms of the overland instruments while the aircraft was at the same altitude as the overland equipment on the summit of Mt. Haleakela.


1966 ◽  
Vol 44 (6) ◽  
pp. 1329-1347 ◽  
Author(s):  
M. Bercovitch

We have established the correlation between the atmospheric temperature contribution to the diurnal variation observed by a meson monitor at Deep River and the diurnal variation of two easily and continuously observable atmospheric variables, the ground-level air temperature and the barometric pressure. The atmospheric meson diurnal variation vector is taken to be, on a statistical basis, A = M−RN, where M and N represent the observed meson-monitor and neutron-monitor diurnal variations and R is the factor of proportionality between the meson and neutron monitor responses to the primary anisotropy. It is found that A is proportional in amplitude to T, the ground-level temperature diurnal variation, and, further, that T and the barometric-pressure diurnal variation P are proportional in amplitude. The "best-fit" representation of A in terms of T and P is determined by minimizing the mean-square deviation between the daily vectors RN and (M−A). Where A = CtT + CpP, the best fit occurs when Ct = −0.0052%/ °C, Cp = 0.038%/mb, R = 0.47, and the phase of T is shifted by + 1.0 hour. These values apply to Deep River, where the original hourly meson data have been barometer-corrected using a coefficient of 0.16%/mb.


1989 ◽  
Vol 94 (A2) ◽  
pp. 1459 ◽  
Author(s):  
H. Moraal ◽  
M. S. Potgieter ◽  
P. H. Stoker ◽  
A. J. van der Walt

1961 ◽  
Vol 39 (5) ◽  
pp. 668-676 ◽  
Author(s):  
S. M. Lapointe ◽  
D. C. Rose

The direction of maximum sensitivity of a neutron monitor is calculated numerically for a set of points on the same geomagnetic meridian but extending in latitude from the equator to the pole. This leads to two master curves, one for the longitude, the other for the latitude of this direction. From these curves this direction is obtained in geographic co-ordinates for some 20 cosmic-ray stations. The method of calculation is described taking into account atmospheric absorption and the energy spectrum of the incident particles. The aperture of the sensitive cone, or source width, is also calculated. Finally the accuracy of the results is discussed and the application of the concept of effective direction is described.


Sign in / Sign up

Export Citation Format

Share Document