Thermal tolerance and heat shock proteins in encysted embryos of Artemia from widely different thermal habitats

Saline Lakes ◽  
2001 ◽  
pp. 221-229 ◽  
Author(s):  
James S. Clegg ◽  
Nguyen Van Hoa ◽  
Patrick Sorgeloos
2003 ◽  
Vol 66 (11) ◽  
pp. 2045-2050 ◽  
Author(s):  
YI ZHANG ◽  
MANSEL W. GRIFFITHS

Heat shock proteins play an important role in protecting bacterial cells against several stresses, including starvation. In this study, the promoters for two genes encoding heat shock proteins involved in many stress responses, UspA and GrpE, were fused with the green fluorescent protein (gfp) gene. Thus, the expression of the two genes could be quantified by measuring the fluorescence emitted by the cells under different environmental conditions. The heat resistance levels of starved and nonstarved cells during storage at 5, 10, and 37°C were compared with the levels of expression of the uspA and grpE genes. D52-values (times required for decimal reductions in count at 52°C) increased by 11.5, 14.6, and 18.5 min when cells were starved for 3 h at 37°C, for 24 h at 10°C, and for 2 days at 5°C, respectively. In all cases, these increases were significant (P < 0.01), indicating that the stress imposed by starvation altered the ability of E. coli O157:H7 to survive subsequent heat treatments. Thermal tolerance was correlative with the induction of UspA and GrpE. At 5°C, the change in the thermal tolerance of the pathogen was positively linked to the induced expression of the grpE gene but negatively related to the expression of the uspA gene. The results obtained in this study indicate that UspA plays an important role in starvation-induced thermal tolerance at 37°C but that GrpE may be more involved in regulating this response at lower temperatures. An improvement in our understanding of the molecular mechanisms involved in these cross-protection responses may make it possible to devise strategies to limit their effects.


2010 ◽  
Vol 41 (2) ◽  
pp. 171-184 ◽  
Author(s):  
Timothy M. Healy ◽  
Wendy E. Tymchuk ◽  
Edward J. Osborne ◽  
Patricia M. Schulte

Northern and southern subspecies of the Atlantic killifish, Fundulus heteroclitus, differ in maximal thermal tolerance. To determine whether these subspecies also differ in their heat shock response (HSR), we exposed 20°C acclimated killifish to a 2 h heat shock at 34°C and examined gene expression in fish from both subspecies during heat shock and recovery using real-time quantitative PCR and a heterologous cDNA microarray designed for salmonid fishes. The heat shock proteins Hsp70-1, hsp27, and hsp30 were upregulated to a greater extent in the high temperature-tolerant southern subspecies than in the less tolerant northern subspecies, whereas hsp70-2 (which showed the largest upregulation of all the heat shock proteins) in both gill and muscle and hsp90α in muscle was upregulated to a greater extent in northern than in southern fish. These data demonstrate that differences in the HSR between subspecies cannot be due to changes in a single global regulator but must occur via gene-specific mechanisms. They also suggest that the role, if any, of hsps in establishing thermal tolerance is complex and varies from gene to gene. Heterologous microarray hybridization provided interpretable gene expression signatures, detecting differential regulation of genes known to be involved in the heat shock response in other species. Under control conditions, a variety of genes were differentially expressed in muscle between subspecies that suggest differences in muscle fiber type and could relate to previously observed differences between subspecies in the thermal sensitivity of swimming performance and metabolism.


1990 ◽  
Vol 80 (2) ◽  
pp. 301-306
Author(s):  
Tiina Vahala ◽  
Tage Eriksson ◽  
Peter Engstrom

Sign in / Sign up

Export Citation Format

Share Document