Marine Transport Systems for Oil Export from the Prirazlomnoye Oil Field in the Barents Sea

Author(s):  
Mikhail Yu. Basarygin ◽  
Vyacheslav P. Kuznetsov ◽  
Yury A. Simonov ◽  
Yury I. Soldatov
2021 ◽  
Author(s):  
Guowen Lei ◽  
Milan Stanko ◽  
Thiago Lima Silva ◽  
Tom Widerøe ◽  
Arnljot Skogvang

Abstract A field with two neighboring reservoirs was discovered in the Barents Sea in 2013 and 2014. After a successful extended well test of an appraisal well in 2018 and initial field planning tasks, a preliminary drilling and production schedule was proposed based on cross-domain collaboration and group work involving several disciplines. In this paper, mathematical programming is employed to model and optimize the economic value of the project in order to determine the best drilling and production schedule for the field. The optimization includes some of the technical constraints considered by the field development team while also considering uncertainties such as reservoir size, productivity of well, and cost. These have been systematically evaluated by using simulation-based optimization (sampling). The results were that the use of mathematical programming allows the field planner to evaluate several scenarios within a reasonable time frame, thereby enabling rapid changes in the decisions to respond to new information and risk considerations in a dynamic environment. This paper illustrates the benefits of utilizing mathematical programming in early field planning to optimize the drilling and production schedule.


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Sign in / Sign up

Export Citation Format

Share Document