Energy-Efficient Sensing Data Delivery for Low Power Environmental Sensors

Author(s):  
Deawoo Kim ◽  
Jinhwan Jung ◽  
Hankyeol Lee ◽  
Yung Yi
2021 ◽  
Vol 1084 (1) ◽  
pp. 012120
Author(s):  
M Srinivasan ◽  
P Manojkumar ◽  
A Dheepancharavarthy

Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


2014 ◽  
Vol 626 ◽  
pp. 127-135 ◽  
Author(s):  
D. Jessintha ◽  
M. Kannan ◽  
P.L. Srinivasan

Discrete Cosine Transform (DCT) is commonly used in image compression. In the history of DCT, a milestone was the Distributed Arithmetic (DA) technique. Due to the technology dependency a multiplier-less computation was built with DA based technique. It occupied less area but the throughput is less. Later, due to the technology scaling, multiplier based architectures can be easily adapted for low-power and high-performance architecture. Fixed width multipliers [1]-[7] reduces hardware and time complexity. In this work, Radix 4 fixed width multiplier is adapted with DCT architecture due to low power consumption and saves 30% power. In order to reduce truncation errors caused during fixed width multiplication, an estimation circuit is designed based on conditional probability theory.


2011 ◽  
Vol 35 (3) ◽  
pp. 318-328 ◽  
Author(s):  
Yiqiong Shi ◽  
Bah-Hwee Gwee ◽  
Joseph Chang

2021 ◽  
Vol 2 (2) ◽  

Techniques for reducing power consumption in digital circuits that underly automatic control of modern engineering systems are of paramount importance due to the simultaneously growing demands for portable multimedia devices and energy conservation. Digital filters, being ubiquitous in such devices, are thus a prime candidate for low power design. We review an algorithmic approach to low power frequency-selective digital filtering, an essential ingredient for energy efficient technological innovation in many domains.


2021 ◽  
Vol 2 (2) ◽  

Techniques for reducing power consumption in digital circuits that underly automatic control of modern engineering systems are of paramount importance due to the simultaneously growing demands for portable multimedia devices and energy conservation. Digital filters, being ubiquitous in such devices, are thus a prime candidate for low power design. We review an algorithmic approach to low power frequency-selective digital filtering, an essential ingredient for energy efficient technological innovation in many domains.


Sign in / Sign up

Export Citation Format

Share Document