Pointwise Multipliers on Musielak-Orlicz-Morrey Spaces

Author(s):  
Eiichi Nakai
2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Helena F. Gonçalves

AbstractIn this paper we provide non-smooth atomic decompositions of 2-microlocal Besov-type and Triebel–Lizorkin-type spaces with variable exponents $$B^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w , ϕ ( R n ) and $$F^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w , ϕ ( R n ) . Of big importance in general, and an essential tool here, are the characterizations of the spaces via maximal functions and local means, that we also present. These spaces were recently introduced by Wu et al. and cover not only variable 2-microlocal Besov and Triebel–Lizorkin spaces $$B^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w ( R n ) and $$F^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w ( R n ) , but also the more classical smoothness Morrey spaces $$B^{s, \tau }_{p,q}({\mathbb {R}}^n)$$ B p , q s , τ ( R n ) and $$F^{s,\tau }_{p,q}({\mathbb {R}}^n)$$ F p , q s , τ ( R n ) . Afterwards, we state a pointwise multipliers assertion for this scale.


2020 ◽  
Vol 8 (1) ◽  
pp. 363-381
Author(s):  
Ryota Kawasumi ◽  
Eiichi Nakai

Abstract We consider generalized weak Morrey spaces with variable growth condition on spaces of homogeneous type and characterize the pointwise multipliers from a generalized weak Morrey space to another one. The set of all pointwise multipliers from a weak Lebesgue space to another one is also a weak Lebesgue space. However, we point out that the weak Morrey spaces do not always have this property just as the Morrey spaces not always.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2754
Author(s):  
Eiichi Nakai ◽  
Yoshihiro Sawano

The spaces of pointwise multipliers on Morrey spaces are described in terms of Morrey spaces, their preduals, and vector-valued Morrey spaces introduced by Ho. This paper covers weak Morrey spaces as well. The result in the present paper completes the characterization of the earlier works of the first author’s papers written in 1997 and 2000, as well as Lemarié-Rieusset’s 2013 paper. As a corollary, the main result in the present paper shows that different quasi-Banach lattices can create the same vector-valued Morrey spaces. The goal of the present paper is to provide a complete picture of the pointwise multiplier spaces.


2020 ◽  
Vol 57 (1) ◽  
pp. 68-90 ◽  
Author(s):  
Tahir S. Gadjiev ◽  
Vagif S. Guliyev ◽  
Konul G. Suleymanova

Abstract In this paper, we obtain generalized weighted Sobolev-Morrey estimates with weights from the Muckenhoupt class Ap by establishing boundedness of several important operators in harmonic analysis such as Hardy-Littlewood operators and Calderon-Zygmund singular integral operators in generalized weighted Morrey spaces. As a consequence, a priori estimates for the weak solutions Dirichlet boundary problem uniformly elliptic equations of higher order in generalized weighted Sobolev-Morrey spaces in a smooth bounded domain Ω ⊂ ℝn are obtained.


2021 ◽  
Vol 11 (1) ◽  
pp. 72-95
Author(s):  
Xiao Zhang ◽  
Feng Liu ◽  
Huiyun Zhang

Abstract This paper is devoted to investigating the boundedness, continuity and compactness for variation operators of singular integrals and their commutators on Morrey spaces and Besov spaces. More precisely, we establish the boundedness for the variation operators of singular integrals with rough kernels Ω ∈ Lq (S n−1) (q > 1) and their commutators on Morrey spaces as well as the compactness for the above commutators on Lebesgue spaces and Morrey spaces. In addition, we present a criterion on the boundedness and continuity for a class of variation operators of singular integrals and their commutators on Besov spaces. As applications, we obtain the boundedness and continuity for the variation operators of Hilbert transform, Hermit Riesz transform, Riesz transforms and rough singular integrals as well as their commutators on Besov spaces.


2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


2021 ◽  
Author(s):  
Saba Mehmood ◽  
Eridani ◽  
Fatmawati

2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .


Sign in / Sign up

Export Citation Format

Share Document