Automatic Seed Point Selection in B-Mode Breast Ultrasound Images

Author(s):  
Madan Lal ◽  
Lakhwinder Kaur
Author(s):  
Rashid Al Mukaddim ◽  
Juan Shan ◽  
Irteza Enan Kabir ◽  
Abdullah Salmon Ashik ◽  
Rasheed Abid ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
S. O. Haji ◽  
R. Z. Yousif

The thyroid nodule is one of the endocrine issues caused by an irregular cell development. This rate of survival can be improved by earlier nodule detection. Accordingly, the accurate recognition of the nodule is of the utmost importance in providing powerful results in building the survival rate. The reduction in the accuracy of manual or semiautomatic segmentation methods for thyroid nodule detection is due to many factors, basically, the lack of experience of the sonographer and latency of operation. Most lesion regions in ultrasound images are homogeneous. Therefore, the value of entropy in these regions is high compared to its neighbours. Based on this criterion, a novel procedure for automatically selecting the seed point in thyroid nodule images is proposed. The proposed system consists of three components: neutrosophic image enhancement and speckle reduction to reduce speckle noise and automatic seed selection algorithm extracted from the centre of candidate block in ultrasound thyroid images based on the principle that most of its Higher Order Spectra Entropies (HOSE) from Radon Transform (RT) at different angles are within the range between average and maximum entropies, and the region growing image segmentation is applied with the constant threshold. The performance of proposed automatic segmentation method is compared with other methods in terms of calculating, True Positive (TP) value (96.44 ± 3.01%), False Positive (FP) value (3.55 ± 1.45%), Dice Coefficient (DC) value (92.24 ± 6.47%), Similarity Index (SI) (80.57 ± 1.06%), and Hausdroff Distance (HD) (0.42 ± 0.24 pixels). The proposed system can be considered as an added value to the malignancy diagnosis in thyroid nodule by an endocrinologist.


2020 ◽  
Vol 43 (1) ◽  
pp. 29-45
Author(s):  
Alex Noel Joseph Raj ◽  
Ruban Nersisson ◽  
Vijayalakshmi G. V. Mahesh ◽  
Zhemin Zhuang

Nipple is a vital landmark in the breast lesion diagnosis. Although there are advanced computer-aided detection (CADe) systems for nipple detection in breast mediolateral oblique (MLO) views of mammogram images, few academic works address the coronal views of breast ultrasound (BUS) images. This paper addresses a novel CADe system to locate the Nipple Shadow Area (NSA) in ultrasound images. Here the Hu Moments and Gray-level Co-occurrence Matrix (GLCM) were calculated through an iterative sliding window for the extraction of shape and texture features. These features are then concatenated and fed into an Artificial Neural Network (ANN) to obtain probable NSA’s. Later, contour features, such as shape complexity through fractal dimension, edge distance from the periphery and contour area, were computed and passed into a Support Vector Machine (SVM) to identify the accurate NSA in each case. The coronal plane BUS dataset is built upon our own, which consists of 64 images from 13 patients. The test results show that the proposed CADe system achieves 91.99% accuracy, 97.55% specificity, 82.46% sensitivity and 88% F-score on our dataset.


2019 ◽  
Vol 121 ◽  
pp. 78-96 ◽  
Author(s):  
Mohammad I. Daoud ◽  
Ayman A. Atallah ◽  
Falah Awwad ◽  
Mahasen Al-Najjar ◽  
Rami Alazrai

Data in Brief ◽  
2020 ◽  
Vol 28 ◽  
pp. 104863 ◽  
Author(s):  
Walid Al-Dhabyani ◽  
Mohammed Gomaa ◽  
Hussien Khaled ◽  
Aly Fahmy

Diagnostics ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 176 ◽  
Author(s):  
Tomoyuki Fujioka ◽  
Mio Mori ◽  
Kazunori Kubota ◽  
Yuka Kikuchi ◽  
Leona Katsuta ◽  
...  

Deep convolutional generative adversarial networks (DCGANs) are newly developed tools for generating synthesized images. To determine the clinical utility of synthesized images, we generated breast ultrasound images and assessed their quality and clinical value. After retrospectively collecting 528 images of 144 benign masses and 529 images of 216 malignant masses in the breasts, synthesized images were generated using a DCGAN with 50, 100, 200, 500, and 1000 epochs. The synthesized (n = 20) and original (n = 40) images were evaluated by two radiologists, who scored them for overall quality, definition of anatomic structures, and visualization of the masses on a five-point scale. They also scored the possibility of images being original. Although there was no significant difference between the images synthesized with 1000 and 500 epochs, the latter were evaluated as being of higher quality than all other images. Moreover, 2.5%, 0%, 12.5%, 37.5%, and 22.5% of the images synthesized with 50, 100, 200, 500, and 1000 epochs, respectively, and 14% of the original images were indistinguishable from one another. Interobserver agreement was very good (|r| = 0.708–0.825, p < 0.001). Therefore, DCGAN can generate high-quality and realistic synthesized breast ultrasound images that are indistinguishable from the original images.


Sign in / Sign up

Export Citation Format

Share Document