Role of Solar Energy Applications for Environmental Sustainability

Author(s):  
Atin K. Pathak ◽  
Kapil Chopra ◽  
Har Mohan Singh ◽  
V. V. Tyagi ◽  
Richa Kothari ◽  
...  
2021 ◽  
Vol 13 (11) ◽  
pp. 6295
Author(s):  
Nuria Novas ◽  
Rosa María Garcia ◽  
Jose Manuel Camacho ◽  
Alfredo Alcayde

Conventional energy resources are not climate sustainable. Currently, engineers and scientists are looking for sustainable energy solutions influenced by climate change. A wide variety of sustainable natural energy resources are available, but they require technical solutions for their implementation. The general trend in energy research is based on renewable resources, amongst which solar energy stands out, being the most mature and widely accepted. In this paper, the current state of the sustainable energy system has been analysed. The main purpose is to provide additional context to assess future scenarios. The study of past contributions allows sustainability planning and increasing the welfare of future society. The aim is to highlight global trends in research on sustainable solar energy from 1995 to 2020 through a bibliometric analysis of 4260 publications. According to their linkages, the analysed articles are distributed in nine clusters: Sustainability assessment, Sustainable energy solutions, Environmental payback time analysis, Sustainability of solar energy in different scenarios, Environmental sustainability, Solar energy applications, Sustainable energy optimisation, Energy transition and Energy and sustainable scenarios. The most repeated keywords are Sustainability, Renewable energy, and Solar energy. Energy research and the exploration of new renewable solar resources are still necessary to meet sustainable energy’s future challenges.


Author(s):  
B. Khadambari ◽  
S. S. Bhattacharya

Solar has become one of the fastest growing renewable energy sources. With the push towards sustainability it is an excellent solution to resolve the issue of our diminishing finite resources. Alternative photovoltaic systems are of much importance to utilize solar energy efficiently. The Cu-chalcopyrite compounds CuInS2 and CuInSe2 and their alloys provide absorber material of high absorption coefficients of the order of 105 cm-1. Cu2ZnSnS4 (CZTS) is more promising material for photovoltaic applications as Zn and Sn are abundant materials of earth’s crust. Further, the preparation of CZTS-ink facilitates the production of flexible solar cells. The device can be designed with Al doped ZnO as the front contact, n-type window layer (e.g. intrinsic ZnO); an n-type thin film buffer layer (e.g. CdS) and a p-type CZTS absorber layer with Molybdenum (Mo) substrate as back contact. In this study, CZTS films were synthesized by a non-vaccum solvent based process technique from a molecular-ink using a non toxic eco-friendly solvent dimethyl sulfoxide (DMSO). The deposited CZTS films were optimized and characterized by XRD, UV-visible spectroscopy and SEM.


2021 ◽  
Vol 5 (2) ◽  
pp. 16
Author(s):  
Isabel Padilla ◽  
Maximina Romero ◽  
José I. Robla ◽  
Aurora López-Delgado

In this work, concentrated solar energy (CSE) was applied to an energy-intensive process such as the vitrification of waste with the aim of manufacturing glasses. Different types of waste were used as raw materials: a hazardous waste from the aluminum industry as aluminum source; two residues from the food industry (eggshell and mussel shell) and dolomite ore as calcium source; quartz sand was also employed as glass network former. The use of CSE allowed obtaining glasses in the SiO2-Al2O3-CaO system at exposure time as short as 15 min. The raw materials, their mixtures, and the resulting glasses were characterized by means of X-ray fluorescence, X-ray diffraction, and differential thermal analysis. The feasibility of combining a renewable energy, as solar energy and different waste for the manufacture of glasses, would highly contribute to circular economy and environmental sustainability.


AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055214
Author(s):  
A. Kosinska ◽  
B. V. Balakin ◽  
P. Kosinski

Sign in / Sign up

Export Citation Format

Share Document