Fault Diagnosis in Printing Press Roller Bearing Based on Spectrum Kurtosis and Improved EEMD

Author(s):  
Jialing Zhang ◽  
Jimei Wu ◽  
Yan Wang ◽  
Kaikai Li ◽  
Li’e Ma ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


2014 ◽  
Vol 1014 ◽  
pp. 501-504 ◽  
Author(s):  
Shu Guo ◽  
You Cai Xu ◽  
Xin Shi Li ◽  
Ran Tao ◽  
Kun Li ◽  
...  

In order to discover the fault with roller bearing in time, a new fault diagnosis method based on Empirical mode decomposition (EMD) and BP neural network is put forward in the paper. First, we get the fault signal through experiments. Then we use EMD to decompose the vibration signal into a series of single signals. We can extract main fault information from the single signals. The kurtosis coefficient of the single signals forms a feature vector which is used as the input data of the BP neural network. The trained BP neural network can be used for fault identification. Through analyzing, BP neural network can distinguish the fault into normal state, inner race fault, outer race fault. The results show that this method can gain very stable classification performance and good computational efficiency.


2013 ◽  
Vol 470 ◽  
pp. 683-688
Author(s):  
Hai Yang Jiang ◽  
Hua Qing Wang ◽  
Peng Chen

This paper proposes a novel fault diagnosis method for rotating machinery based on symptom parameters and Bayesian Network. Non-dimensional symptom parameters in frequency domain calculated from vibration signals are defined for reflecting the features of vibration signals. In addition, sensitive evaluation method for selecting good non-dimensional symptom parameters using the method of discrimination index is also proposed for detecting and distinguishing faults in rotating machinery. Finally, the application example of diagnosis for a roller bearing by Bayesian Network is given. Diagnosis results show the methods proposed in this paper are effective.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Li Qin ◽  
Wen-Jin Zhang ◽  
Zhen-Ya Wang

Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.


2013 ◽  
Vol 312 ◽  
pp. 25-28
Author(s):  
Ji Mei Wu ◽  
Yan Chen ◽  
Bo Gao ◽  
Tuan Yong Yi

By means of considering improved Lundberg-Palmgren (L-P) fatigue life theory and rollers and other comprehensive factors, a model of fatigue life is setup for eccentric double row cylindrical roller bearing under rotation. On this basis, the calculation flow chart is given and the fatigue life is calculated. Then come to the conclusions that the fatigue life of bearing is influenced by radial load, rotating speed, radial clearance.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yanfeng Peng ◽  
Junhang Chen ◽  
Yanfei Liu ◽  
Junsheng Cheng ◽  
Yu Yang ◽  
...  

Adaptive sparsest narrow-band decomposition (ASNBD) method is proposed based on matching pursuit (MP) and empirical mode decomposition (EMD). ASNBD obtains the local narrow-band (LNB) components during the optimization process. Firstly, an optimal filter is designed. The parameter vector in the filter is obtained during optimization. The optimized objective function is a regulated singular local linear operator so that each obtained component is limited to be a LNB signal. Afterward, a component is generated by filtering the original signal with the optimized filter. Compared with MP, ASNBD is superior in both the physical meaning and the adaptivity. Drawbacks in EMD such as end effect and mode mixing are reduced in the proposed method because the application of interpolation function is not required. To achieve the fault diagnosis of roller bearings, raw signals are decomposed by ASNBD at first. Then, appropriate features of the decomposed results are chosen by applying distance evaluation technique (DET). Afterward, different faults are recognized by utilizing maximum margin classification based on flexible convex hulls (MMC-FCH). Comparisons between EMD and ASNBD show that the proposed method performs better in the antinoise performance, accuracy, orthogonality, and extracting the fault features of roller bearings.


Sign in / Sign up

Export Citation Format

Share Document