BWT: An Index Structure to Speed-Up Both Exact and Inexact String Matching

Author(s):  
Yangjun Chen ◽  
Yujia Wu
Author(s):  
Yaokai Feng

Along with Kansei information being successfully introduced to information retrieval systems, particularly multimedia retrieval systems, many Kansei retrieval systems have been implemented in the past two decades. And, it has become clear that the traditional multimedia retrieval systems using key-words or/and other text information are not enough in many applications, because that they can not deal with sensitive words reflecting user’s subjectivity. In this chapter, Kansei retrieval systems efficiently taking user’s subjectivity into account will be discussed in detail. Like many traditional retrieval systems, Kansei retrieval systems are also based on databases system, which are called Kansei databases. After roughly introducing some existing Kansei retrieval systems is a general flow for designing Kansei retrieval systems. Also, we will discuss how to speed up the Kansei retrieval systems by using multidimensional indexing technologies and you will learn that our proposed multidimensional index structure, Adaptive R*-tree (AR*-tree for short), is more suitable to Kansei retrieval systems than the traditional multidimensional indexing technologies.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1348
Author(s):  
Alberto Arteta Albert ◽  
Nuria Gómez Blas ◽  
Luis Fernando de Mingo López

An issue that most databases face is the static and manual character of indexing operations. This old-fashioned way of indexing database objects is proven to affect the database performance to some degree, creating downtime and a possible impact in the performance that is usually solved by manually running index rebuild or defrag operations. Many data mining algorithms can speed up by using appropriate index structures. Choosing the proper index largely depends on the type of query that the algorithm performs against the database. The statistical analyzers embedded in the Database Management System are neither always accurate enough to automatically determine when to use an index nor to change its inner structure. This paper provides an algorithm that targets those indexes that are causing performance issues on the databases and then performs an automatic operation (defrag, recreation, or modification) that can boost the overall performance of the Database System. The effectiveness of proposed algorithm has been evaluated with several experiments developed and show that this approach consistently leads to a better resulting index configuration. The downtime of having a damaged, fragmented, or inefficient index is reduced by increasing the chances for the optimizer to be using the proper index structure.


1994 ◽  
Vol 1 (42) ◽  
Author(s):  
Dany Breslauer

The so called "four Russians technique'' is often used to speed up algorithms by encoding several data items in a single memory cell. Given a sequence of n symbols over a constant size alphabet, one can encode the sequence into O(n / lambda) memory cells in O(log(lambda) ) time using n / log(lambda) processors.<br /> <br />This paper presents an efficient CRCW-PRAM string-matching algorithm for coded texts that takes O(log log(m/lambda)) time making only O(n / lambda ) operations, an improvement by a factor of lambda = O(log n) on the number of operations used in previous algorithms. Using this string-matching algorithm one can test if a string is square-free and find all palindromes in a string in O(log log n) time using n / log log n processors.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


2004 ◽  
Vol 63 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Friedrich Wilkening ◽  
Claudia Martin

Children 6 and 10 years of age and adults were asked how fast a toy car had to be to catch up with another car, the latter moving with a constant speed throughout. The speed change was required either after half of the time (linear condition) or half of the distance (nonlinear condition), and responses were given either on a rating scale (judgment condition) or by actually producing the motion (action condition). In the linear condition, the data patterns for both judgments and actions were in accordance with the normative rule at all ages. This was not true for the nonlinear condition, where children’s and adults’ judgment and also children’s action patterns were linear, and only adults’ action patterns were in line with the nonlinearity principle. Discussing the reasons for the misconceptions and for the action-judgment dissociations, a claim is made for a new view on the development of children’s concepts of time and speed.


Sign in / Sign up

Export Citation Format

Share Document