Quantifying Movement of the Head and Shoulders During Quiet Standing Using MatLab Software and Promising Parameters

Author(s):  
Petr Volf ◽  
Jan Hybl ◽  
Patrik Kutilek ◽  
Jan Hejda ◽  
Jiri Hozman ◽  
...  
Author(s):  
Veronika Kotolova ◽  
Patrik Kutilek ◽  
Slavka Viteckova ◽  
Jonas Palicka ◽  
Zdenek Svoboda ◽  
...  

2013 ◽  
Vol 16 (4) ◽  
pp. 117-124 ◽  
Author(s):  
Firas M. Al-Jomaily ◽  
◽  
Hussain A. Al-jobouri ◽  
Ahmed K. Mheemeed ◽  
◽  
...  
Keyword(s):  

2013 ◽  
Vol 4 (2) ◽  
pp. 20-28
Author(s):  
Farhad Soleimanian Gharehchopogh ◽  
Hadi Najafi ◽  
Kourosh Farahkhah

The present paper is an attempt to get total minimum of trigonometric Functions by Simulated Annealing. To do so the researchers ran Simulated Annealing. Sample trigonometric functions and showed the results through Matlab software. According the Simulated Annealing Solves the problem of getting stuck in a local Maxterm and one can always get the best result through the Algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ambrus Zelei ◽  
John Milton ◽  
Gabor Stepan ◽  
Tamas Insperger

AbstractPostural sway is a result of a complex action–reaction feedback mechanism generated by the interplay between the environment, the sensory perception, the neural system and the musculation. Postural oscillations are complex, possibly even chaotic. Therefore fitting deterministic models on measured time signals is ambiguous. Here we analyse the response to large enough perturbations during quiet standing such that the resulting responses can clearly be distinguished from the local postural sway. Measurements show that typical responses very closely resemble those of a critically damped oscillator. The recovery dynamics are modelled by an inverted pendulum subject to delayed state feedback and is described in the space of the control parameters. We hypothesize that the control gains are tuned such that (H1) the response is at the border of oscillatory and nonoscillatory motion similarly to the critically damped oscillator; (H2) the response is the fastest possible; (H3) the response is a result of a combined optimization of fast response and robustness to sensory perturbations. Parameter fitting shows that H1 and H3 are accepted while H2 is rejected. Thus, the responses of human postural balance to “large” perturbations matches a delayed feedback mechanism that is optimized for a combination of performance and robustness.


2013 ◽  
Vol 805-806 ◽  
pp. 716-720
Author(s):  
Tao Xu ◽  
Tian Long Shao ◽  
Dong Fang Zhang

Combined with the contents of the study-PSS low-pass link parameter identification. Least-squares method is selected. Using least-square method for PSS low-pass link mathematical model are also deduced. For the results, because of the mathematical model is solving nonlinear equations, cannot used by the Newton method directly. So we choose to use Newton iterations, with this feature, choose to use MATLAB software to solve the equation. Identification of the use of MATLAB software lags after the PSS parameters obtained recognition results compared with national standards, identifying and verifying the practicability.


2016 ◽  
Vol 116 (4) ◽  
pp. 1848-1858 ◽  
Author(s):  
Ryan M. Peters ◽  
Monica D. McKeown ◽  
Mark G. Carpenter ◽  
J. Timothy Inglis

Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults.


Sign in / Sign up

Export Citation Format

Share Document