Microwave Treatment

2018 ◽  
pp. 97-117
Author(s):  
Kao Wu
Keyword(s):  
RSC Advances ◽  
2020 ◽  
Vol 10 (63) ◽  
pp. 38424-38436
Author(s):  
Anna Baranowska-Korczyc ◽  
Ewelina Mackiewicz ◽  
Katarzyna Ranoszek-Soliwoda ◽  
Jarosław Grobelny ◽  
Grzegorz Celichowski

This study describes a new method for passivating Ag nanoparticles (AgNPs) with SnO2 layer and their further treatment by microwave irradiation.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Toyohisa Fujita ◽  
Taichi Aoki ◽  
Josiane Ponou ◽  
Gjergj Dodbiba ◽  
Chunlin He ◽  
...  

This study investigated the removal of sulfur and iron from shungite rocks through different methods after fine grinding: flotation, magnetic separation, microwave treatment, and chemical leaching. In this work, first, a mineralogical study of shungite was conducted. The carbon, silica, iron, and sulfur compositions in the as-received shungite were 45.4%, 38.3%, 4.6%, and 2.4%, respectively. In flotation, a sulfur grade of 1.4% was obtained. In the wet high-gradient magnetic separation at a magnetic flux density of 1 tesla, the iron and sulfur grades in the nonmagnetic fraction were 2.8% and 1.9%, respectively. Furthermore, the sulfur reduced to 0.2% by the 9 min microwave irradiation. In addition, chemical leaching using chelating reagents and inorganic acids was utilized to remove iron and sulfur. Nitrilotriacetic acid (NTA) could reduce the iron and sulfur grades to 2.0% and 0.9%, respectively. For leaching using reverse aqua regia, the iron and sulfur grades were reduced to 0.9% and 0.23%, respectively. For leaching using a 6N HCl with H2O2 aqueous solution, the iron and sulfur grades were reduced to 0.8% and 0.34%, respectively. Overall, chemical leaching using HCl with H2O2 was the most effective for iron and sulfur removal from shungite.


2021 ◽  
Vol 1874 (1) ◽  
pp. 012069
Author(s):  
Norazmi Zulkafli ◽  
M. A. Mohd Amin ◽  
M. A. Azri Azmi ◽  
N. Bahiyah Baba

Fibers ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 40
Author(s):  
Felicia Syrén ◽  
Joel Peterson ◽  
Nawar Kadi

The versatile bast fiber jute has environmental benefits compared to glass fibers. However, for jute to be used in a composite, the fiber properties need to be altered. This study aims to improve the mechanical properties of jute yarn to make it more suitable for technical applications as a composite. To alter its mechanical properties, jute yarn was immersed in water during microwave treatment. The time and power of the microwave settings differed between runs. Two states of the yarn were tested: fastened and un-fastened. Tensile testing was used at the yarn and fiber level, followed by Fourier-transform infrared spectroscopy (FTIR) and microscopy. The treatment result demonstrated the ability to increase the elongation of the jute yarn by 70%. The tenacity was also increased by 34% in the fastened state and 20% in the un-fastened state. FTIR showed that no change in the molecular structure occurred. The treatments resulted in a change of yarn thickness depending on the state of the yarn. The results indicate that microwave treatment can be used to make jute more suitable for technical applications depending on the microwave treatment parameters.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 417
Author(s):  
Maria Pérez ◽  
Anallely López-Yerena ◽  
Julián Lozano-Castellón ◽  
Alexandra Olmo-Cunillera ◽  
Rosa M. Lamuela-Raventós ◽  
...  

There is a growing consumer preference for high quality extra virgin olive oil (EVOO) with health-promoting and sensory properties that are associated with a higher content of phenolic and volatile compounds. To meet this demand, several novel and emerging technologies are being under study to be applied in EVOO production. This review provides an update of the effect of emerging technologies (pulsed electric fields, high pressure, ultrasound, and microwave treatment), compared to traditional EVOO extraction, on yield, quality, and/or content of some minor compounds and bioactive components, including phenolic compounds, tocopherols, chlorophyll, and carotenoids. In addition, the consumer acceptability of EVOO is discussed. Finally, the application of these emerging technologies in the valorization of olive mill wastes, whose generation is of concern due to its environmental impact, is also addressed.


2021 ◽  
pp. 110293
Author(s):  
Thaisa Moro Cantu-Jungles ◽  
Xiaowei Zhang ◽  
Ahmad E. Kazem ◽  
Marcello Iacomini ◽  
Bruce R. Hamaker ◽  
...  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 103
Author(s):  
Xiaoming Song ◽  
Yuewen Zhang ◽  
Nan Cao ◽  
Dong Sun ◽  
Zhipeng Zhang ◽  
...  

This study developed a nano-magnetite-modified biochar material (m-biochar) using a simple and rapid in situ synthesis method via microwave treatment, and systematically investigated the removal capability and mechanism of chromium (VI) by this m-biochar from contaminated groundwater. The m-biochar was fabricated from reed residues and magnetically modified by nano-Fe3O4. The results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) characterisations confirmed the successful doping of nano-Fe3O4 on the biochar with an improved porous structure. The synthesised m-biochar exhibited significantly higher maximum adsorption capacity of 9.92 mg/g compared with that (8.03 mg/g) of the pristine biochar. The adsorption kinetics followed the pseudo-second-order model and the intraparticle diffusion model, which indicated that the overall adsorption rate of Cr(VI) was governed by the processes of chemical adsorption, liquid film diffusion and intramolecular diffusion. The increasing of the pH from 3 to 11 significantly affected the Cr(VI) adsorption, where the capabilities decreased from 9.92 mg/g to 0.435 mg/g and 8.03 mg/g to 0.095 mg/g for the m-biochar and pristine biochar, respectively. Moreover, the adsorption mechanisms of Cr(VI) by m-biochar were evaluated and confirmed to include the pathways of electrostatic adsorption, reduction and complexation. This study highlighted an effective synthesis method to prepare a superior Cr(VI) adsorbent, which could contribute to the effective remediation of heavy metal contaminations in the groundwater.


2021 ◽  
pp. 129887
Author(s):  
Zhong Han ◽  
Ying Li ◽  
Dong-Hui Luo ◽  
Qiang Zhao ◽  
Jun hu Cheng ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 152342-152350
Author(s):  
Hatem Rmili ◽  
Khaldoun Alkhalifeh ◽  
Mohamed Zarouan ◽  
Wassim Zouch ◽  
Mohammad Tariqul Islam

Sign in / Sign up

Export Citation Format

Share Document