Experimental Investigation of Electrochemical Micro-machining Process Parameters on Stainless Steel 316 Using Sodium Chloride Electrolyte

Author(s):  
T. Geethapriyan ◽  
R. Manoj Samson ◽  
J. Thavamani ◽  
A. C. Arun Raj ◽  
Bharadwaj Reddy Pulagam
Machines ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 40
Author(s):  
Evangelos Nikolidakis ◽  
Ioannis Choreftakis ◽  
Aristomenis Antoniadis

Laser machining processes are a new entrant and a rapidly evolving type of non-conventional machining process which allows the machining of complex geometries with high precision, surface quality and productivity in a wide range of materials. Thus, the need for creating a method has emerged that will help the laser machine operator to select the optimal process parameters. In this study an experimental investigation of the effect of the process parameters on the effectiveness of the laser engraving process was held. The examined process parameters were namely the average output power, the repetition rate, and the scanning speed. For this purpose 126 experimental samples, with various combinations of process parameters using a nanosecond Nd:YAG DMG MORI Lasertec 40 laser machine on a SAE 304 stainless steel plate were made. The measured criteria which evaluated the effectiveness of the process were the removed material layer thickness and the material removal rate.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 247
Author(s):  
Geethapriyan Thangamani ◽  
Muthuramalingam Thangaraj ◽  
Khaja Moiduddin ◽  
Syed Hammad Mian ◽  
Hisham Alkhalefah ◽  
...  

Titanium alloy is widely used in modern automobile industries due to its higher strength with corrosion resistance. Such higher strength materials can be effectively machined using unconventional machining processes, especially the electro-chemical micro machining (ECMM) process. It is important to enhance the machining process by investigating the effects of electrolytes and process parameters in ECMM. The presented work describes the influence of three different combinations of Sodium Chloride-based electrolytes on machining Titanium (Ti-6Al-4V) alloy. Based on the ECMM process parameters such as applied voltage, electrolytic concentration, frequency and duty cycle on response, characteristics are determined by the Taguchi design of experiments. The highest material removal rate (MRR) was achieved by the Sodium Chloride and Sodium Nitrate electrolyte. The combination of Sodium Chloride and Citric Acid achieve highest Overcut and Circularity. The optimal overcut was observed from the Sodium Chloride and Glycerol electrolyte due to the presence of glycerol. The better conicity was obtained from Sodium Chloride and Citric Acid in comparison with other electrolytes. A Sodium Chloride and Glycerol combination could generate better machined surface owing to the chelating effect of Glycerol.


Author(s):  
Bikash Choudhuri ◽  
Ruma Sen ◽  
Subrata Kumar Ghosh ◽  
Subhash Chandra Saha

Wire electric discharge machining is a non-conventional machining wherein the quality and cost of machining are influenced by the process parameters. This investigation focuses on finding the optimal level of process parameters, which is for better surface finish, material removal rate and lower wire consumption for machining stainless steel-316 using the grey–fuzzy algorithm. Grey relational technique is applied to find the grey coefficient of each performance, and fuzzy evaluates the multiple performance characteristics index according to the grey relational coefficient of each response. Response surface methodology and the analysis of variance were used for modelling and analysis of responses to predict and find the influence of machining parameters and their proportion of contribution on the individual and overall responses. The measured values from confirmation experiments were compared with the predicted values, which indicate that the proposed models can be effectively used to predict the responses in the wire electrical discharge machining of AISI stainless steel-316. It is found that servo gap set voltage is the most influential factor for this particular steel followed by pulse off time, pulse on time and wire feed rate.


2011 ◽  
Vol 465 ◽  
pp. 191-194 ◽  
Author(s):  
Chi Ping Lai ◽  
Luen Chow Chan ◽  
Tai Chiu Lee

This paper aims at presenting an experimental investigation to compare the rolling behaviors of selected materials under profile rolling process. Copper alloy (C37700), aluminum alloy (AA6063) and stainless steel (AISI304) in 6 mm diameter were selected as rolling specimens. The process parameters, i.e. spindle speed, forward speed, and fractorgraphic analysis were carried out to determine the deformation behaviours of selected materials. The outcomes of this investigation are valuable for engineers to design and fabricate high-quality precision components efficiently.


Sign in / Sign up

Export Citation Format

Share Document