Compacted Sewage Sludge as a Barrier for Tailing Impoundment: The Microbial Functional Diversity in the Compacted Sludge Specimen

Author(s):  
Qing Zhang ◽  
Huyuan Zhang ◽  
Jinfang Wang
2017 ◽  
Vol 31 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Jolanta Joniec ◽  
Magdalena Frąc

Abstract The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former ‘Jeziórko’ Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.


2015 ◽  
Vol 36 (22) ◽  
pp. 2855-2862 ◽  
Author(s):  
Siying Liu ◽  
Jia Liu ◽  
Juanjuan Zhao ◽  
Dongsheng Xia ◽  
Fei Pan ◽  
...  

2021 ◽  
Vol 154 ◽  
pp. 108143
Author(s):  
Shun Han ◽  
Manuel Delgado-Baquerizo ◽  
Xuesong Luo ◽  
Yurong Liu ◽  
Joy D. Van Nostrand ◽  
...  

Author(s):  
Humberto Aponte ◽  
Pedro Mondaca ◽  
Christian Santander ◽  
Sebastián Meier ◽  
Jorge Paolini ◽  
...  

Geoderma ◽  
2013 ◽  
Vol 192 ◽  
pp. 437-445 ◽  
Author(s):  
S. Marinari ◽  
E. Bonifacio ◽  
M.C. Moscatelli ◽  
G. Falsone ◽  
L. Vittori Antisari ◽  
...  

2015 ◽  
Vol 92 ◽  
pp. 35-44 ◽  
Author(s):  
Xin-Li Chen ◽  
Dong Wang ◽  
Xin Chen ◽  
Jing Wang ◽  
Jiao-Jiao Diao ◽  
...  

2012 ◽  
Vol 78 (8) ◽  
pp. 2966-2972 ◽  
Author(s):  
Yuting Liang ◽  
Joy D. Van Nostrand ◽  
Lucie A. N′Guessan ◽  
Aaron D. Peacock ◽  
Ye Deng ◽  
...  

ABSTRACTTo better understand the microbial functional diversity changes with subsurface redox conditions duringin situuranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance ofdsrABgenes (dissimilatory sulfite reductase genes) and methane generation-relatedmcrgenes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily fromGeobactersp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect thein situredox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation.


Sign in / Sign up

Export Citation Format

Share Document