Studies on Increasing Specific Calorific Value of Producer Gas in Auto-gasification of Wooden Pallets by Steam Injection

Author(s):  
G. Prabakaran ◽  
S. Mathiyazhagan ◽  
C. V. Dinesh Kumar ◽  
N. Gunaseelan ◽  
V. Kirubakaran
2016 ◽  
Vol 99 ◽  
pp. 1253-1261 ◽  
Author(s):  
V.S. Yaliwal ◽  
N.R. Banapurmath ◽  
R.S. Hosmath ◽  
S.V. Khandal ◽  
Wojciech M. Budzianowski

2021 ◽  
Vol 45 (03) ◽  
pp. 6-12
Author(s):  
D. K. Vyas ◽  
J. Sravankumar ◽  
J. J. Chavda

A biomass gasifier converts solid fuel such as wood waste, saw-dust briquettes and agro-residues into a gaseous fuel through a thermo-chemical process and the resultant gas can be used for thermal and power generation applications. The present research aims to evaluate the updraft biomass gasifier using different biomass for thermal application. The capacity of updraft gasifier was a 5-10 kg.h-1 and three types of biomass: maize cobs, sized wood and saw dust briquettes were used as fuel for producing producer gas by thermal application. The maximum carbon monoxide (CO), hydrogen (H2) and Methane (CH4) found were 14.8, 12.7 and 3.9%, 14.6, 13.7 and 3.9 % and 14.2, 13.5 and 3.9% at 5 kg.h-1 biomass consumption rate, respectively using maize cobs, sized wood and saw dust briquettes as fuel. The maximum and minimum producer gas calorific value was found 1120 and 1034 kcal.m-3; 1139 and 1034 kcal.m-3 and 1123 and 1036 kcal.m-3 at biomass consumption rate of 5 and 10 kg.h-1 using maize cobs, sized wood and saw dust briquettes as fuel respectively. The maximum gasifier efficiency of 77.94, 70.26 and 69.60% was found at the biomass consumption rate of 5 kg.h-1 using maize cobs, sized wood and saw dust briquettes as fuel, respectively. The minimum gasifier efficiency of 72.72, 64.49 and 64.90 % was found at the biomass consumption rate of 10 kg.h-1 using maize cobs, sized wood and saw dust briquettes as fuel in the system, respectively. The maximum overall thermal efficiency of 29.60, 30.65 and 23.69 % were found at the biomass consumption rates of 8, 7 and 7 kg.h-1 using maize cobs, sized wood and saw dust briquettes, respectively.


Author(s):  
Guanyi Chen ◽  
Gang Li ◽  
Michel P. Glazer ◽  
Chunlei Zhang ◽  
J. Andries

Energy generation from the use of biomass is gaining an increasing attention. Gasification of biomass at present, is widely accepted as a popular technical route to produce fuel gas for the application in boilers, engine, gas/micro turbine or fuel cell. Up to now, most of researchers have focused their attentions only on fixed-bed gasification and fluidised bed gasification under air-blown conditions. In that case, the producer gas is contaminated by high tar contents and particles which could lead to the corrosion and wear of blades of turbine. Furthermore, both the technologies, particularly fixed bed gasification, are not flexible for using multiple biomass-fuel types and also not feasible economically and environmentally for large scale application up to 10∼50 MWth. An innovative circulating fluidised bed concept has been considered in our laboratory for biomass gasification thereby overcoming these challenges. The concept combines and integrates partial oxidation, fast pyrolysis (with an instantaneous drying), gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas, in terms of low tar level and particulates carried out in the producer gas, and overall emissions reduction associated with the combustion of producer gas. This paper describes our innovative concept and presents some experimental results. The results indicate that the gas yield can be above 1.80Nm3/kg with the calorific value of 4.5–5.0MJ/Nm3, and the fluctuation of the gas yield during the period of operation is 3.3%–3.5% for the temperature of 750–800 °C. In genera, the results achieved support our concept as a promising alternative for the gasifier coupled with micro/gas turbine to generate electricity.


1956 ◽  
Vol 13 (7) ◽  
pp. 333-333
Author(s):  
S. N. Tuzov ◽  
V. T. Fronin
Keyword(s):  

2006 ◽  
Vol 129 (3) ◽  
pp. 637-647 ◽  
Author(s):  
Mun Roy Yap ◽  
Ting Wang

Biomass can be converted to energy via direct combustion or thermochemical conversion to liquid or gas fuels. This study focuses on burning producer gases derived from gasifying biomass wastes to produce power. Since the producer gases are usually of low calorific values (LCV), power plant performance under various operating conditions has not yet been proven. In this study, system performance calculations are conducted for 5MWe power plants. The power plants considered include simple gas turbine systems, steam turbine systems, combined cycle systems, and steam injection gas turbine systems using the producer gas with low calorific values at approximately 30% and 15% of the natural gas heating value (on a mass basis). The LCV fuels are shown to impose high compressor back pressure and produce increased power output due to increased fuel flow. Turbine nozzle throat area is adjusted to accommodate additional fuel flows to allow the compressor to operate within safety margin. The best performance occurs when the designed pressure ratio is maintained by widening nozzle openings, even though the turbine inlet pressure is reduced under this adjustment. Power augmentations under four different ambient conditions are calculated by employing gas turbine inlet fog cooling. Comparison between inlet fog cooling and steam injection using the same amount of water mass flow indicates that steam injection is less effective than inlet fog cooling in augmenting power output. Maximizing steam injection, at the expense of supplying the steam to the steam turbine, significantly reduces both the efficiency and the output power of the combined cycle. This study indicates that the performance of gas turbine and combined cycle systems fueled by the LCV fuels could be very different from the familiar behavior of natural gas fired systems. Care must be taken if on-shelf gas turbines are modified to burn LCV fuels.


We intensify our probe on waste biomass found in South India namely Prosopis Juliflora, because of its forceful growth in uncultivated agricultural landfills. To depose the Prosopis Juliflora, biomass gasification is the sufficient thermo-chemical reaction to excerpt useful energy from waste biomass. The fluidized bed gasifier (FBG) was used to gasify the waste biomass Prosopis Juliflora with a feed rate capacity from 5 to 20kg/hr and temperature is in the range of 650 - 950℃ with an equivalence ratio of 0.24 - 0.44 was maintained. When the gasifier is operated alone, the flame temperature is lower so that the conversion rate of heat energy will also be lower. If the gasifier is operated with accessories the flame temperature got increased by 40%, the conversion rate of heat energy will also be high in the compression ignition (CI) engine. The brake thermal efficiency of compression ignition engine for both (diesel) single fuel and (producer gas + diesel) dual fuel modes at four different producer gas mass flow rate has been shown and specific fuel consumption(SFC) has improved slightly due to addition of calorific value in the producer gas to the supply to the engine from the gasifier.


2018 ◽  
Vol 5 (2) ◽  
pp. 443
Author(s):  
Ari Susandy Sanjaya ◽  
S Suhartono ◽  
Herri Susanto

Coal gasification utilization for tea drying unit. Anticipating the rise of fuel oil, the management of a tea plantation and drying plant has considered to substitute its oil consumption with producer gas (gaseous fuel obtained from gasification process). A tea drying unit normally consumes 70 L/h of industrial diesel oil and is operated 10 hours per day. The gasification unit consisted of a down draft fixed bed gasifier (designed capacity of about 100 kg/h), gas cooling and cleaning systems. The gas producer was delivered to the tea processing unit and burned to heat the drying oil: Low calorific value coal (4500 kcal/kg) and wood waste (4000 kcal/kg) have been used as fuel. The gasification unit could be operated as long as 8 hours without refueled since the coal hopper on the toppart of gasifier has a capacity of 1000 kg. Sometimes, the gasification process must be stopped before coal completely consumed due to ash melting inside the gasifier. Combustion of producer gas produced a pale-blue flame, probably due to a lower calorific value of the producer gas or too much excess air. Temperature of heating-air heated by combustion of this producer gas was only up to 96 oC. To achieve the target temperature of 102 oC, a small oil burner must he operated at a rate ofabout 15 L/h. Thus the oil replacement was about 78%.Keywords:  Fuel oil, Producer gas, Downdraft gasifier, Dual fuel, Calorific value, Burner. AbstrakKenaikan harga bahan bakar minyak untuk industri pada awal 2006 telah mendorong berbagai pemikiran dan upaya pemanfaatan bahan bakar alternatif. Sebuah unit gasifikasi telah dipasang di pabrik teh sebagai penyedia bahan bakar alternatif. Unit gasifikasi tersebut terdiri dari gasifier, pendingin, pembersih gas, dan blower. Unit gasifikasi ini ditargetkan untuk dapat menggantikan konsumsi minyak bakar 70 L/jam. Gasifier dirancang untuk kapasitas 120 kg/jam batubara, dan memiliki spesifikasi sebagai berikut: downdraft gasifier; diameter tenggorokan 40 cm, diameter zona reduksi 80 cm. Bunker di bagian atas gasifier memiliki kapasitas sekitar 1000 kg batubara agar gasifier dapat dioperasikan selama 8 jam tanpa pengisian-ulang. Bahan baku gasifikasi yang telah diuji-coba adalah batuhara kalori rendah (4500 kcal/kg) dan limbah kayu (4000 kcal/kg). Gas produser (hasil gasifikasi) dibakar pada burner untuk memanaskan udara pengering teh sampai temperatur target 102 oC. Pembakaran gas produser ternyata menghasilkan api biru pucat yang mungkin disebabkan oleh rendahnya kalor bakar gas dan tingginya udara-lebih. Temperatur udara pengering hasil pemanasan dengan api gas produser hanya mencapai 96 oC. Dan untuk mencapai temperatur udara pengering 102 oC, burner gas prod user harus dibantu dengan burner minyak 15 L/jam. Jadi operasi dual fued ini dapat memberi penghematan minyak bakar 78%.Kata kunci: Minyak bakar, Gas produser, Downdraft gasifier, Dual fuel, Kalor bakar, Burner. 


2022 ◽  
Vol 181 ◽  
pp. 1223-1236
Author(s):  
D.T. Pio ◽  
H.G.M.F. Gomes ◽  
L.A.C. Tarelho ◽  
A.C.M. Vilas-Boas ◽  
M.A.A. Matos ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 196-207
Author(s):  
Amin Jowkar ◽  
Farhang Sereshki ◽  
Mehdi Najafi

AbstractThe determination of operational parameters in the underground coal gasification (UCG) process should be considered in two aspects: first, the total coal in each UCG panel must be gasified and second, the calorific value of the produced gas should be acceptable. The main aim of this study is to present a model that meets these aspects and increasing the calorific value of syngas during this process. In order to achieve those aims, eight different increasing scenarios were devised for total gasification of coal per panel. These scenarios included: increasing oxygen injection rate (scenario 1), the amount of steam injection (scenario 2), operation time (scenario 3), cavity pressure (scenario 4), increase operation time and cavity pressure simultaneously (scenario 5), increase steam injection speed and oxygen injection rate simultaneously (scenario 6), increase in cavity pressure, operating time, steam injection rate and oxygen injection rate simultaneously (scenario 7) and also simultaneous increase in the operating time and steam injection rate (scenario 8). The results showed that for producing syngas with a higher calorific value, the following parameters had the most positive effects respectively: operation time, cavity pressure, steam injection rate and oxygen injection rate. Finally, the model validation was performed for the Centralia LBK-1 UCG pilot and the results showed that this model is very close to reality.


Sign in / Sign up

Export Citation Format

Share Document