Convergence Properties of Genuine Bernstein–Durrmeyer Operators

Author(s):  
Ana-Maria Acu
2015 ◽  
Vol 24 (1) ◽  
pp. 17-26
Author(s):  
EMRE DENIZ ◽  
◽  
ALI ARAL ◽  

The purpose of the present paper is to study the local and global direct approximation properties of the Durrmeyer type generalization of Ibragimov Gadjiev operators defined in [Aral, A. and Acar, T., On Approximation Properties of Generalized Durrmeyer Operators, (submitted)]. The results obtained in this study consist of Korovkin type theorem which enables us to approximate a function uniformly by new Durrmeyer operators, and estimate for approximation error of the operators in terms of weighted modulus of continuity. These results are obtained for the functions which belong to weighted space with polynomial weighted norm by new operators which act on functions defined on the non compact interval [0.∞). We finally present a direct approximation result.


Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 855-868
Author(s):  
Rabia Aktaş ◽  
Dilek Söylemez ◽  
Fatma Taşdelen

In the present paper, we introduce a Stancu type generalization of Sz?sz- Durrmeyer operators including Brenke type polynomials. We give convergence properties of these operators via Korovkin?s theorem and the order of convergence by using a classical approach. As an example, we consider a Stancu type generalization of the Durrmeyer type integral operators including Hermite polynomials of variance v. Then, we obtain the rates of convergence by using the second modulus of continuity. Also, for these operators including Hermite polynomials of variance v, we present a Voronovskaja type theorem and r-th order generalization of these positive linear operators.


1998 ◽  
Vol 14 (4) ◽  
pp. 767-800
Author(s):  
Claude Bélisle ◽  
Arnon Boneh ◽  
Richard J. Caron

Author(s):  
Florian Mannel

AbstractWe consider the Broyden-like method for a nonlinear mapping $F:\mathbb {R}^{n}\rightarrow \mathbb {R}^{n}$ F : ℝ n → ℝ n that has some affine component functions, using an initial matrix B0 that agrees with the Jacobian of F in the rows that correspond to affine components of F. We show that in this setting, the iterates belong to an affine subspace and can be viewed as outcome of the Broyden-like method applied to a lower-dimensional mapping $G:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d}$ G : ℝ d → ℝ d , where d is the dimension of the affine subspace. We use this subspace property to make some small contributions to the decades-old question of whether the Broyden-like matrices converge: First, we observe that the only available result concerning this question cannot be applied if the iterates belong to a subspace because the required uniform linear independence does not hold. By generalizing the notion of uniform linear independence to subspaces, we can extend the available result to this setting. Second, we infer from the extended result that if at most one component of F is nonlinear while the others are affine and the associated n − 1 rows of the Jacobian of F agree with those of B0, then the Broyden-like matrices converge if the iterates converge; this holds whether the Jacobian at the root is invertible or not. In particular, this is the first time that convergence of the Broyden-like matrices is proven for n > 1, albeit for a special case only. Third, under the additional assumption that the Broyden-like method turns into Broyden’s method after a finite number of iterations, we prove that the convergence order of iterates and matrix updates is bounded from below by $\frac {\sqrt {5}+1}{2}$ 5 + 1 2 if the Jacobian at the root is invertible. If the nonlinear component of F is actually affine, we show finite convergence. We provide high-precision numerical experiments to confirm the results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Hernández-Santamaría ◽  
Alberto Saldaña

Abstract We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent problem ( - Δ ) s ⁢ u s = | u s | 2 s ⋆ - 2 ⁢ u s , u s ∈ D 0 s ⁢ ( Ω ) ,  2 s ⋆ := 2 ⁢ N N - 2 ⁢ s , (-\Delta)^{s}u_{s}=\lvert u_{s}\rvert^{2_{s}^{\star}-2}u_{s},\quad u_{s}\in D^% {s}_{0}(\Omega),\,2^{\star}_{s}:=\frac{2N}{N-2s}, where s is any positive number, Ω is either ℝ N {\mathbb{R}^{N}} or a smooth symmetric bounded domain, and D 0 s ⁢ ( Ω ) {D^{s}_{0}(\Omega)} is the homogeneous Sobolev space. Depending on the kind of symmetry considered, solutions can be sign-changing. We show that, up to a subsequence, a l.e.s.s. u s {u_{s}} converges to a l.e.s.s. u t {u_{t}} as s goes to any t > 0 {t>0} . In bounded domains, this convergence can be characterized in terms of an homogeneous fractional norm of order t - ε {t-\varepsilon} . A similar characterization is no longer possible in unbounded domains due to scaling invariance and an incompatibility with the functional spaces; to circumvent these difficulties, we use a suitable rescaling and characterize the convergence via cut-off functions. If t is an integer, then these results describe in a precise way the nonlocal-to-local transition. Finally, we also include a nonexistence result of nontrivial nonnegative solutions in a ball for any s > 1 {s>1} .


2017 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Tuncer Acar

Abstract The present paper deals with the rate of convergence of the general class of Durrmeyer operators, which are generalization of Ibragimov-Gadjiev operators. The special cases of the operators include somewell known operators as particular cases viz. Szász-Mirakyan-Durrmeyer operators, Baskakov-Durrmeyer operators. Herewe estimate the rate of convergence of Ibragimov-Gadjiev-Durrmeyer operators for functions having derivatives of bounded variation.


Sign in / Sign up

Export Citation Format

Share Document