A Survey on Existing Convolutional Neural Networks and Waste Management Techniques and an Approach to Solve Waste Classification Problem Using Neural Networks

Author(s):  
Tejashwini Hiremath ◽  
S. Rajarajeswari
Author(s):  
Sarah Badr AlSumairi ◽  
Mohamed Maher Ben Ismail

Pneumonia is an infectious disease of the lungs. About one third to one half of pneumonia cases are caused by bacteria. Early diagnosis is a critical factor for a successful treatment process. Typically, the disease can be diagnosed by a radiologist using chest X-ray images. In fact, chest X-rays are currently the best available method for diagnosing pneumonia. However, the recognition of pneumonia symptoms is a challenging task that relies on the availability of expert radiologists. Such “human” diagnosis can be inaccurate and subjective due to lack of clarity and erroneous decision. Moreover, the error can increase more if the physician is requested to analyze tens of X-rays within a short period of time. Therefore, Computer-Aided Diagnosis (CAD) systems were introduced to support and assist physicians and make their efforts more productive. In this paper, we investigate, design, implement and assess customized Convolutional Neural Networks to overcome the image-based Pneumonia classification problem. Namely, ResNet-50 and DenseNet-161 models were inherited to design customized deep network architecture and improve the overall pneumonia classification accuracy. Moreover, data augmentation was deployed and associated with standard datasets to assess the proposed models. Besides, standard performance measures were used to validate and evaluate the proposed system.


2021 ◽  
Vol 18 (2) ◽  
pp. 4-15
Author(s):  
Luan Oliveira Silva ◽  
◽  
Leandro dos Santos Araújo ◽  
Victor Ferreira Souza ◽  
Raimundo Matos Barros Neto ◽  
...  

Pneumonia is one of the most common medical problems in clinical practice and is the leading fatal infectious disease worldwide. According to the World Health Organization, pneumonia kills about 2 million children under the age of 5 and is constantly estimated to be the leading cause of infant mortality, killing more children than AIDS, malaria, and measles combined. A key element in the diagnosis is radiographic data, as chest x-rays are routinely obtained as a standard of care and can aid to differentiate the types of pneumonia. However, a rapid radiological interpretation of images is not always available, particularly in places with few resources, where childhood pneumonia has the highest incidence and mortality rates. As an alternative, the application of deep learning techniques for the classification of medical images has grown considerably in recent years. This study presents five implementations of convolutional neural networks (CNNs): ResNet50, VGG-16, InceptionV3, InceptionResNetV2, and ResNeXt50. To support the diagnosis of the disease, these CNNs were applied to solve the classification problem of medical radiographs from people with pneumonia. InceptionResNetV2 obtained the best recall and precision results for the Normal and Pneumonia classes, 93.95% and 97.52% respectively. ResNeXt50 achieved the best precision and f1-score results for the Normal class (94.62% and 94.25% respectively) and the recall and f1-score results for the Pneumonia class (97.80% and 97.65%, respectively).


Author(s):  
Dr. Ramya C

Abstract: Handwriting recognition is an important problem in character recognition. It is much more difficult especially for regional languages such as Kannada. In this regard there has been a recent surge of interest in designing convolutional neural networks (CNNs) for this problem. However, CNNs typically require large amounts of training data and cannot handle input transformations. Capsule networks, which is referred to as capsNets proposed recently to overcome these shortcomings and posed to revolutionize deep learning solutions. Our particular interest in this work is to recognize kannada digit characters, and making capsnet robust to rotation and transformation. In this paper, we focus to achieve the following objectives :1. Explore whether or not capsnet is capable of providing a better fit for the digit images; 2. Adapt and incorporate capsNets for the problem of kannada MNIST digit classification problem at hand; 3. develop a real time application to take handwritten input from the user and recognize the digit; 4. Compare the capsnet with other models on various parameters. Keywords: Capsule Networks, Deep Learning, Convolutional Neural Networks (CNNs), Kannada MNIST, VGG-16


2020 ◽  
Vol 79 (39-40) ◽  
pp. 29411-29431 ◽  
Author(s):  
Hanxiang Wang ◽  
Yanfen Li ◽  
L. Minh Dang ◽  
Jaesung Ko ◽  
Dongil Han ◽  
...  

2016 ◽  
Vol 12 (S325) ◽  
pp. 173-179 ◽  
Author(s):  
Qi Feng ◽  
Tony T. Y. Lin ◽  

AbstractImaging atmospheric Cherenkov telescopes (IACTs) are sensitive to rare gamma-ray photons, buried in the background of charged cosmic-ray (CR) particles, the flux of which is several orders of magnitude greater. The ability to separate gamma rays from CR particles is important, as it is directly related to the sensitivity of the instrument. This gamma-ray/CR-particle classification problem in IACT data analysis can be treated with the rapidly-advancing machine learning algorithms, which have the potential to outperform the traditional box-cut methods on image parameters. We present preliminary results of a precise classification of a small set of muon events using a convolutional neural networks model with the raw images as input features. We also show the possibility of using the convolutional neural networks model for regression problems, such as the radius and brightness measurement of muon events, which can be used to calibrate the throughput efficiency of IACTs.


Author(s):  
Oleksii Gorokhovatskyi ◽  
Olena Peredrii

This paper describes the investigation results about the usage of shallow (limited by few layers only) convolutional neural networks (CNNs) to solve the video-based gender classification problem. Different architectures of shallow CNN are proposed, trained and tested using balanced and unbalanced static image datasets. The influence of diverse voting over confidences methods, applied for frame-by-frame gender classification of the video stream, is investigated for possible enhancement of the classification accuracy. The possibility of the grouping of shallow networks into ensembles is investigated; it has been shown that the accuracy may be more improved with the further voting of separate shallow CNN classification results inside an ensemble over a single frame or different ones.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ángel Morera ◽  
Ángel Sánchez ◽  
José Francisco Vélez ◽  
Ana Belén Moreno

Demographic handwriting-based classification problems, such as gender and handedness categorizations, present interesting applications in disciplines like Forensic Biometrics. This work describes an experimental study on the suitability of deep neural networks to three automatic demographic problems: gender, handedness, and combined gender-and-handedness classifications, respectively. Our research was carried out on two public handwriting databases: the IAM dataset containing English texts and the KHATT one with Arabic texts. The considered problems present a high intrinsic difficulty when extracting specific relevant features for discriminating the involved subclasses. Our solution is based on convolutional neural networks since these models had proven better capabilities to extract good features when compared to hand-crafted ones. Our work also describes the first approach to the combined gender-and-handedness prediction, which has not been addressed before by other researchers. Moreover, the proposed solutions have been designed using a unique network configuration for the three considered demographic problems, which has the advantage of simplifying the design complexity and debugging of these deep architectures when handling related handwriting problems. Finally, the comparison of achieved results to those presented in related works revealed the best average accuracy in the gender classification problem for the considered datasets.


AI ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 586-606
Author(s):  
Tanmay Garg ◽  
Mamta Garg ◽  
Om Prakash Mahela ◽  
Akhil Ranjan Garg

To judge the ability of convolutional neural networks (CNNs) to effectively and efficiently transfer image representations learned on the ImageNet dataset to the task of recognizing COVID-19 in this work, we propose and analyze four approaches. For this purpose, we use VGG16, ResNetV2, InceptionResNetV2, DenseNet121, and MobileNetV2 CNN models pre-trained on ImageNet dataset to extract features from X-ray images of COVID and Non-COVID patients. Simulations study performed by us reveal that these pre-trained models have a different level of ability to transfer image representation. We find that in the approaches that we have proposed, if we use either ResNetV2 or DenseNet121 to extract features, then the performance of these approaches to detect COVID-19 is better. One of the important findings of our study is that the use of principal component analysis for feature selection improves efficiency. The approach using the fusion of features outperforms all the other approaches, and with this approach, we could achieve an accuracy of 0.94 for a three-class classification problem. This work will not only be useful for COVID-19 detection but also for any domain with small datasets.


Sign in / Sign up

Export Citation Format

Share Document