Video Stream Gender Classification Using Shallow CNN

Author(s):  
Oleksii Gorokhovatskyi ◽  
Olena Peredrii

This paper describes the investigation results about the usage of shallow (limited by few layers only) convolutional neural networks (CNNs) to solve the video-based gender classification problem. Different architectures of shallow CNN are proposed, trained and tested using balanced and unbalanced static image datasets. The influence of diverse voting over confidences methods, applied for frame-by-frame gender classification of the video stream, is investigated for possible enhancement of the classification accuracy. The possibility of the grouping of shallow networks into ensembles is investigated; it has been shown that the accuracy may be more improved with the further voting of separate shallow CNN classification results inside an ensemble over a single frame or different ones.

2016 ◽  
Vol 12 (S325) ◽  
pp. 173-179 ◽  
Author(s):  
Qi Feng ◽  
Tony T. Y. Lin ◽  

AbstractImaging atmospheric Cherenkov telescopes (IACTs) are sensitive to rare gamma-ray photons, buried in the background of charged cosmic-ray (CR) particles, the flux of which is several orders of magnitude greater. The ability to separate gamma rays from CR particles is important, as it is directly related to the sensitivity of the instrument. This gamma-ray/CR-particle classification problem in IACT data analysis can be treated with the rapidly-advancing machine learning algorithms, which have the potential to outperform the traditional box-cut methods on image parameters. We present preliminary results of a precise classification of a small set of muon events using a convolutional neural networks model with the raw images as input features. We also show the possibility of using the convolutional neural networks model for regression problems, such as the radius and brightness measurement of muon events, which can be used to calibrate the throughput efficiency of IACTs.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ángel Morera ◽  
Ángel Sánchez ◽  
José Francisco Vélez ◽  
Ana Belén Moreno

Demographic handwriting-based classification problems, such as gender and handedness categorizations, present interesting applications in disciplines like Forensic Biometrics. This work describes an experimental study on the suitability of deep neural networks to three automatic demographic problems: gender, handedness, and combined gender-and-handedness classifications, respectively. Our research was carried out on two public handwriting databases: the IAM dataset containing English texts and the KHATT one with Arabic texts. The considered problems present a high intrinsic difficulty when extracting specific relevant features for discriminating the involved subclasses. Our solution is based on convolutional neural networks since these models had proven better capabilities to extract good features when compared to hand-crafted ones. Our work also describes the first approach to the combined gender-and-handedness prediction, which has not been addressed before by other researchers. Moreover, the proposed solutions have been designed using a unique network configuration for the three considered demographic problems, which has the advantage of simplifying the design complexity and debugging of these deep architectures when handling related handwriting problems. Finally, the comparison of achieved results to those presented in related works revealed the best average accuracy in the gender classification problem for the considered datasets.


Author(s):  
D. Clermont ◽  
C. Kruse ◽  
F. Rottensteiner ◽  
C. Heipke

<p><strong>Abstract.</strong> The aftermath of the air strikes during World War II is still present today. Numerous bombs dropped by planes did not explode, still exist in the ground and pose a considerable explosion hazard. Tracking down these duds can be tackled by detecting bomb craters. The existence of a dud can be inferred from the existence of a crater. This work proposes a method for the automatic detection of bomb craters in aerial wartime images. First of all, crater candidates are extracted from an image using a blob detector. Based on given crater references, for every candidate it is checked whether it, in fact, represents a crater or not. Candidates from various aerial images are used to train, validate and test Convolutional Neural Networks (CNNs) in the context of a two-class classification problem. A loss function (controlling what the CNNs are learning) is adapted to the given task. The trained CNNs are then used for the classification of crater candidates. Our work focuses on the classification of crater candidates and we investigate if combining data from related domains is beneficial for the classification. We achieve a F1-score of up to 65.4% when classifying crater candidates with a realistic class distribution.</p>


2022 ◽  
Vol 163 (2) ◽  
pp. 57
Author(s):  
Helen Qu ◽  
Masao Sako

Abstract In this work, we present classification results on early supernova light curves from SCONE, a photometric classifier that uses convolutional neural networks to categorize supernovae (SNe) by type using light-curve data. SCONE is able to identify SN types from light curves at any stage, from the night of initial alert to the end of their lifetimes. Simulated LSST SNe light curves were truncated at 0, 5, 15, 25, and 50 days after the trigger date and used to train Gaussian processes in wavelength and time space to produce wavelength–time heatmaps. SCONE uses these heatmaps to perform six-way classification between SN types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. SCONE is able to perform classification with or without redshift, but we show that incorporating redshift information improves performance at each epoch. SCONE achieved 75% overall accuracy at the date of trigger (60% without redshift), and 89% accuracy 50 days after trigger (82% without redshift). SCONE was also tested on bright subsets of SNe (r < 20 mag) and produced 91% accuracy at the date of trigger (83% without redshift) and 95% five days after trigger (94.7% without redshift). SCONE is the first application of convolutional neural networks to the early-time photometric transient classification problem. All of the data processing and model code developed for this paper can be found in the SCONE software package 1 1 github.com/helenqu/scone located at github.com/helenqu/scone (Qu 2021).


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3677-3680

Dog Breed identification is a specific application of Convolutional Neural Networks. Though the classification of Images by Convolutional Neural Network serves to be efficient method, still it has few drawbacks. Convolutional Neural Networks requires a large amount of images as training data and basic time for training the data and to achieve higher accuracy on the classification. To overcome this substantial time we use Transfer Learning. In computer vision, transfer learning refers to the use of a pre-trained models to train the CNN. By Transfer learning, a pre-trained model is trained to provide solution to classification problem which is similar to the classification problem we have. In this project we are using various pre-trained models like VGG16, Xception, InceptionV3 to train over 1400 images covering 120 breeds out of which 16 breeds of dogs were used as classes for training and obtain bottleneck features from these pre-trained models. Finally, Logistic Regression a multiclass classifier is used to identify the breed of the dog from the images and obtained 91%, 94%,95% validation accuracy for these different pre-trained models VGG16, Xception, InceptionV3.


2021 ◽  
Vol 2 (5) ◽  
pp. 39-52
Author(s):  
Ender Ozturk ◽  
Fatih Erden ◽  
Ismail Guvenc

Unmanned Aerial Vehicles (UAVs), or drones, which can be considered as a coverage extender for Internet of Everything (IoE), have drawn high attention recently. The proliferation of drones will raise privacy and security concerns in public. This paper investigates the problem of classification of drones from Radio Frequency (RF) fingerprints at the low Signal-to-Noise Ratio (SNR) regime. We use Convolutional Neural Networks (CNNs) trained with both RF time-series images and the spectrograms of 15 different off-the-shelf drone controller RF signals. When using time-series signal images, the CNN extracts features from the signal transient and envelope. As the SNR decreases, this approach fails dramatically because the information in the transient is lost in the noise, and the envelope is distorted heavily. In contrast to time-series representation of the RF signals, with spectrograms, it is possible to focus only on the desired frequency interval, i.e., 2.4 GHz ISM band, and filter out any other signal component outside of this band. These advantages provide a notable performance improvement over the time-series signals-based methods. To further increase the classification accuracy of the spectrogram-based CNN, we denoise the spectrogram images by truncating them to a limited spectral density interval. Creating a single model using spectrogram images of noisy signals and tuning the CNN model parameters, we achieve a classification accuracy varying from 92% to 100% for an SNR range from -10 dB to 30 dB, which significantly outperforms the existing approaches to our best knowledge.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document