Relation Between an East Asian Winter Monsoon Index and Regional Wave Characteristics at Middle-North Coast of Japan

APAC 2019 ◽  
2019 ◽  
pp. 161-168
Author(s):  
C. T. Nguyen ◽  
M. Yuhi ◽  
K. Taniguchi
2010 ◽  
Vol 23 (15) ◽  
pp. 4255-4262 ◽  
Author(s):  
Yueqing Li ◽  
Song Yang

Abstract A new index measuring the East Asian winter monsoon is defined using the mean wind shears of upper-tropospheric zonal wind based on the belief that the physical processes of both higher and lower latitudes, and at both lower and upper troposphere, should be considered to depict the variability of monsoon. When the index is high (low), the westerly jet is strong (weak), the East Asian trough is deep (shallow), the Siberian high is strong (weak), and anomalous low-level northerlies (southerlies) prevail over East Asia. As a result, the surface and lower-tropospheric temperature over East Asia decreases (increases) and the cold surges over Southeast Asia and tropical western Pacific are more (less) active. The index, which exhibits distinct interannual variations, is also strongly correlated with the Arctic Oscillation and Niño-3.4 sea surface temperature (SST) index. Compared to previous indexes, this index takes into account more influencing factors and better elucidates the physical processes associated with monsoon, enhancing interpretations of the variability of monsoon and its effects on regional weather and climate. Furthermore, the monsoon index is significantly linked to antecedent tropical Pacific SST and is highly predictable in the NCEP Climate Forecast System, indicating the advantage of the index for operational predictions of monsoon.


2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

The Holocene ◽  
2021 ◽  
pp. 095968362110190
Author(s):  
Tsai-Wen Lin ◽  
Stefanie Kaboth-Bahr ◽  
Kweku Afrifa Yamoah ◽  
André Bahr ◽  
George Burr ◽  
...  

The East Asian Winter Monsoon (EAWM) is a fundamental part of the global monsoon system that affects nearly one-quarter of the world’s population. Robust paleoclimate reconstructions in East Asia are complicated by multiple sources of precipitation. These sources, such as the EAWM and typhoons, need to be disentangled in order to understand the dominant source of precipitation influencing the past and current climate. Taiwan, situated within the subtropical East Asian monsoon system, provides a unique opportunity to study monsoon and typhoon variability through time. Here we combine sediment trap data with down-core records from Cueifong Lake in northeastern Taiwan to reconstruct monsoonal rainfall fluctuations over the past 3000 years. The monthly collected grain-size data indicate that a decrease in sediment grain size reflects the strength of the EAWM. End member modelling analysis (EMMA) on sediment core and trap data reveals two dominant grain-size end-members (EMs), with the coarse EM 2 representing a robust indicator of EAWM strength. The downcore variations of EM 2 show a gradual decrease over the past 3000 years indicating a gradual strengthening of the EAWM, in agreement with other published EAWM records. This enhanced late-Holocene EAWM can be linked to the expansion of sea-ice cover in the western Arctic Ocean caused by decreased summer insolation.


2011 ◽  
Vol 28 (4) ◽  
pp. 913-926 ◽  
Author(s):  
Gang Zeng ◽  
Wei-Chyung Wang ◽  
Zhaobo Sun ◽  
Zhongxian Li

Sign in / Sign up

Export Citation Format

Share Document