scholarly journals A Dynamical Index for the East Asian Winter Monsoon

2010 ◽  
Vol 23 (15) ◽  
pp. 4255-4262 ◽  
Author(s):  
Yueqing Li ◽  
Song Yang

Abstract A new index measuring the East Asian winter monsoon is defined using the mean wind shears of upper-tropospheric zonal wind based on the belief that the physical processes of both higher and lower latitudes, and at both lower and upper troposphere, should be considered to depict the variability of monsoon. When the index is high (low), the westerly jet is strong (weak), the East Asian trough is deep (shallow), the Siberian high is strong (weak), and anomalous low-level northerlies (southerlies) prevail over East Asia. As a result, the surface and lower-tropospheric temperature over East Asia decreases (increases) and the cold surges over Southeast Asia and tropical western Pacific are more (less) active. The index, which exhibits distinct interannual variations, is also strongly correlated with the Arctic Oscillation and Niño-3.4 sea surface temperature (SST) index. Compared to previous indexes, this index takes into account more influencing factors and better elucidates the physical processes associated with monsoon, enhancing interpretations of the variability of monsoon and its effects on regional weather and climate. Furthermore, the monsoon index is significantly linked to antecedent tropical Pacific SST and is highly predictable in the NCEP Climate Forecast System, indicating the advantage of the index for operational predictions of monsoon.

2006 ◽  
Vol 134 (8) ◽  
pp. 2165-2179 ◽  
Author(s):  
Bingyi Wu ◽  
Renhe Zhang ◽  
Rosanne D’Arrigo

Abstract Two distinct modes of the East Asian winter monsoon (EAWM) have been identified, and they correspond to real and imaginary parts of the leading mode of the EAWM, respectively. Analyses of these modes used the National Centers for Environment Prediction (NCEP) and National Center for Atmospheric Research (NCAR) monthly mean reanalysis datasets for the period 1968–2003, as well as the Southern Oscillation index (SOI), North Atlantic Oscillation index, and eastern equatorial Pacific sea surface temperature (SST) data. Results were obtained by resolving a complex Hermite matrix derived from 850-hPa anomalous wind fields, and determining the resulting modes’ associations with several climate variables. The first distinct mode (M1) is characterized by an anomalous meridional wind pattern over East Asia and the western North Pacific. Mode M1 is closely related to several features of the atmospheric circulation, including the Siberian high, East Asian trough, East Asian upper-tropospheric jet, and local Hadley circulation over East Asia. Thus, M1 reflects the traditional EAWM pattern revealed in previous studies. The second distinct EAWM mode (M2), which was not identified previously, displays dominant zonal wind anomalies over the same area. Mode M2 exhibits a closer relation than M1 to sea level pressure anomalies over the northwestern Pacific southeast of Japan and with the SOI and equatorial eastern Pacific SST. Unlike M1, M2 does not show coherent relationships with the Siberian high, East Asian trough, and East Asian upper-tropospheric jet. Since atmospheric circulation anomalies relevant to M2 exhibit a quasi-barotropic structure, its existence cannot simply be attributed to differential land–sea heating. El Niño events tend to occur in the negative phase of M1 and the positive phase of M2, both corresponding to a weakened EAWM. The Arctic Oscillation does not appear to impact the EAWM on interannual time scales. Although the spatial patterns for the two modes are very different, the two distinct modes are complementary, with the leading EAWM mode being a linear combination of the two. The results herein therefore demonstrate that a single EAWM index may be inappropriate for investigating and predicting the EAWM.


2015 ◽  
Vol 28 (22) ◽  
pp. 9013-9028 ◽  
Author(s):  
Xiao Luo ◽  
Yaocun Zhang

Abstract This study investigates the linkage between East Asian winter monsoon (EAWM) variability and upper-level jets, with particular focus on the East Asian polar front jet (PJ) and its concurrent variation with the subtropical jet located to the south of the Tibetan Plateau (TSJ). The winter upper-level zonal wind variations over the Asian landmass (70°–120°E) are dominated by two principal modes (i.e., meridional displacement of the PJ and out-of-phase variation in the intensity of the TSJ and PJ) and they are closely linked to the EAWM northern mode and southern mode, respectively. Southward shifting of the PJ concurs with northwestward displacement of the Siberian high (SH), an enhanced northern East Asian trough, leading to cold winter in northern East Asia. Meanwhile the simultaneous TSJ intensification and PJ weakening is linked to an amplified SH, a southward shift of the Aleutian low (AL), a strengthened southern East Asian trough, and a wavelike anomaly pattern extending from western Barents Sea downstream to East Asia at the 500-hPa level. Equatorward shift of the PJ is associated with La Niña conditions in the tropics and sea ice anomalies over the Arctic. An intensified TSJ and weakened PJ are preceded by autumn warming over the central and eastern Pacific Ocean and are linked to circulation anomalies induced by the extensions of stationary Rossby waves, as well as synoptic-scale transient eddy activity anomalies. Therefore, a combination of external forcing and internal atmospheric dynamics plays a role in driving the variations of two leading EOFs, and there is potential for seasonal forecasting of both modes.


2014 ◽  
Vol 27 (6) ◽  
pp. 2361-2374 ◽  
Author(s):  
Lin Wang ◽  
Wen Chen

Abstract The thermal contrast between the Asian continent and the adjacent oceans is the primary aspect of the East Asian winter monsoon (EAWM) that can be well represented in the sea level pressure (SLP) field. Based on this consideration, a new SLP-based index measuring the intensity of the EAWM is proposed by explicitly taking into account both the east–west and the north–south pressure gradients around East Asia. The new index can delineate the EAWM-related circulation anomalies well, including the deepened (shallow) midtropospheric East Asian trough, sharpened and accelerated (widened and decelerated) upper-tropospheric East Asian jet stream, and enhanced (weakened) lower-tropospheric northerly winds in strong (weak) EAWM winters. Compared with previous indices, the new index has a very good performance describing the winter-mean surface air temperature variations over East Asia, especially for the extreme warm or cold winters. The index is strongly correlated with several atmospheric teleconnections including the Arctic Oscillation, the Eurasian pattern, and the North Pacific Oscillation/western Pacific pattern, implying the possible internal dynamics of the EAWM variability. Meanwhile, the index is significantly linked to El Niño–Southern Oscillation (ENSO) and the sea surface temperature (SST) over the tropical Indian Ocean. Moreover, the SST anomalies over the tropical Indian Ocean are more closely related to the index than ENSO as an independent predictor. This adds further knowledge to the prediction potentials of the EAWM apart from ENSO. The predictability of the index is high in the hindcasts of the Centre National de Recherches Météorologiques (CNRM) model from Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Hence, it would be a good choice to use this index for the monitoring, prediction, and research of the EAWM.


2009 ◽  
Vol 5 (2) ◽  
pp. 1215-1229
Author(s):  
H. F. Zhu ◽  
X. Q. Fang ◽  
X. M. Shao ◽  
Z. Y. Yin

Abstract. Long-term climatic records are scarce in the northeast Asia for understanding the behavior of the East Asian Winter Monsoon. Here we describe a 250-year February–April temperature reconstruction (TCBM) based on tree-ring widths of Korean Pines from the Changbai Mountain area, Northeast China. The reconstruction can account for 45.7% of the temperature variance in the instrumental period (1953 to 2001). Four cold events including 1784–1815, 1827–1851, 1878–1889 and 1911–1945, and two warm events of 1750–1783 and 1855–1877 were identified before the instrumental period. Four regime shifts were also detected at 1781, 1857, 1878 and 1989. Good agreements between TCBM and other temperature records of East Asia suggest that the reconstruction is of good reliability and captures the regional cold/warm events of East Asia. Moreover, TCBM shows negative correlations with the instrumental or proxy-based EAWM intensity records. The known weakening of the EAWM in the late 1980s is in agreement with the regime shift at 1989 in TCBM. These comparisons suggest that the February–April temperature reconstruction may be a good indicator of the EAWM intensity.


2019 ◽  
Author(s):  
Xin Hao ◽  
Shengping He ◽  
Huijun Wang ◽  
Tingting Han

Abstract. The East Asian winter monsoon (EAWM) can be greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Here we explore the contribution of anthropogenic influence to the change in the EAWM over the past decades. Under all forcings observed during 1960–2013 (All-Hist run), the atmospheric general circulation model is able to reproduce the climatology and variability of the EAWM-related surface air temperature and 500 hPa geopotential height, and shows a statistically significant decreasing EAWM intensity with a trend coefficient of ∼−0.04 yr−1 which is close to the observed trend. By contrast, the simulation, which is driven by the same forcing as All-Hist run but with the anthropogenic contribution to them removed, shows no decreasing trend in the EAWM intensity. By comparing the simulations under two different forcing scenarios, we further reveal that the responses of the EAWM to the anthropogenic forcing include a rise of 0.6 ° in surface air temperature over the East Asia as well as weakening of the East Asia trough, which may result from the poleward expansion and intensification of the East Asian jet forced by the change of temperature gradient in the troposphere. Additionally, compared with the simulation without anthropogenic forcing, the frequency of strong (weak) EAWM occurrence is reduced (increased) by 45 % (from 0 to 10/7). These results indicate that the weakening of the EAWM during 1960–2013 may be mainly attributed to the anthropogenic influence.


2017 ◽  
Vol 30 (7) ◽  
pp. 2697-2716 ◽  
Author(s):  
Xin Hao ◽  
Shengping He

Using long-term observational data and numerical model experiments, this study found that the Atlantic multidecadal oscillation (AMO) affects the influence of ENSO-like sea surface temperature anomalies (SSTAs, which contain the variability of both El Niño–Southern Oscillation and Pacific decadal oscillation) on the interannual change in the East Asian winter monsoon (EAWM). In the observations, the out-of-phase relationship between the variations in ENSO and the EAWM was significantly intensified when the AMO and ENSO-like SSTAs were in phase. Warmer-than-normal winters occurred across East Asia when the ENSO-like SSTAs and AMO were positively in phase, with a significantly weakened Siberian high and anomalous anticyclones over the western North Pacific. The opposite patterns occurred under negative in-phase conditions. In contrast, when the ENSO-like and AMO SSTAs were out of phase, the anomalies related to the EAWM tended to exhibit relatively weaker features. Numerical model experiments confirmed these observational results. When the models were perturbed with warm ENSO-like SSTAs and warm AMO SSTAs, the atmosphere showed a weakened Siberian high, strong anticyclonic anomalies over the Philippine Sea, a weakened East Asian trough, and dominant positive temperature anomalies over East Asia, implying a weaker EAWM. Reverse responses to negative in-phase temperature anomalies were observed. However, the atmospheric signals that responded to the out-of-phase conditions were less robust. This phenomenon may be attributed to the superposition of the interannual variability of the EAWM caused by ENSO-like SSTAs upon the influence of AMO on background Eurasian climate and the Walker circulation response to the heating source provided by the AMO, which induced changes in ENSO-like variability through the surface wind anomalies and modulated the anomalous anticyclone/cyclone over the Philippine Sea in warm–cold ENSO-like events.


Sign in / Sign up

Export Citation Format

Share Document