Towards In-Network Generalized Trustworthy Data Collection for Trustworthy Cyber-Physical Systems

Author(s):  
Hafiz ur Rahman ◽  
Guojun Wang ◽  
Md Zakirul Alam Bhuiyan ◽  
Jianer Chen
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Liang He ◽  
Linghe Kong ◽  
Jun Tao ◽  
Jingdong Xu ◽  
Jianping Pan

The collection of sensory data is crucial for cyber-physical systems. Employing mobile agents (MAs) to collect data from sensors offers a new dimension to reduce and balance their energy consumption but leads to large data collection latency due to MAs’ limited velocity. Most existing research effort focuses on the offline mobile data collection (MDC), where the MAs collect data from sensors based on preoptimized tours. However, the efficiency of these offline MDC solutions degrades when the data generation of sensors varies. In this paper, we investigate the on-demand MDC; that is, MAs collect data based on the real-time data collection requests from sensors. Specifically, we construct queuing models to describe the First-Come-First-Serve-based MDC with a single MA and multiple MAs, respectively, laying a theoretical foundation. We also use three examples to show how such analysis guides online MDC in practice.


2021 ◽  
Vol 7 ◽  
pp. e504
Author(s):  
Hafiz Ur Rahman ◽  
Guojun Wang ◽  
Md Zakirul Alam Bhuiyan ◽  
Jianer Chen

Sensors in Cyber-Physical Systems (CPS) are typically used to collect various aspects of the region of interest and transmit the data towards upstream nodes for further processing. However, data collection in CPS is often unreliable due to severe resource constraints (e.g., bandwidth and energy), environmental impacts (e.g., equipment faults and noises), and security concerns. Besides, detecting an event through the aggregation in CPS can be intricate and untrustworthy if the sensor's data is not validated during data acquisition, before transmission, and before aggregation. This paper introduces In-network Generalized Trustworthy Data Collection (IGTDC) framework for event detection in CPS. This framework facilitates reliable data for aggregation at the edge of CPS. The main idea of IGTDC is to enable a sensor's module to examine locally whether the event's acquired data is trustworthy before transmitting towards the upstream nodes. It further validates whether the received data can be trusted or not before data aggregation at the sink node. Additionally, IGTDC helps to identify faulty sensors. For reliable event detection, we use collaborative IoT tactics, gate-level modeling with Verilog User Defined Primitive (UDP), and Programmable Logic Device (PLD) to ensure that the event's acquired data is reliable before transmitting towards the upstream nodes. We employ Gray code in gate-level modeling. It helps to ensure that the received data is reliable. Gray code also helps to distinguish a faulty sensor. Through simulation and extensive performance analysis, we demonstrate that the collected data in the IGTDC framework is reliable and can be used in the majority of CPS applications.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2425
Author(s):  
Maria Poltavtseva ◽  
Alexander Shelupanov ◽  
Dmitriy Bragin ◽  
Dmitry Zegzhda ◽  
Elena Alexandrova

Modern cyber-physical systems (CPS) use digital control of physical processes. This allows attackers to conduct various cyberattacks on these systems. According to the current trends, an information security monitoring system (ISMS) becomes part of a security management system of CPS. It provides information to make a decision and generate a response. A large number of new methods are aimed at CPS security, including security assessment, intrusion detection, and ensuring sustainability. However, as a cyber-physical system operates over time, its structure and requirements may change. The datasets available for the protection object (CPS) and the security requirements have become dynamic. This dynamic effect causes asymmetry between the monitoring data collection and processing subsystem and the presented security tasks. The problem herein is the choice of the most appropriate set of methods in order to solve the security problems of a particular CPS configuration from a particular bank of the available methods. To solve this problem, the authors present a method for the management of an adaptive information security monitoring system. The method consists of solving a multicriteria discrete optimization problem under Pareto-optimality conditions when the available data, methods or external requirements change. The experimental study was performed on an example of smart home intrusion detection. In the study, the introduction of a constraint (a change in requirements) led to the revision of the monitoring scheme and a different recommendation of the monitoring method. As a result, the information security monitoring system gains the property of adaptability to changes in tasks and the available data. An important result from the study is the fact that the monitoring scheme obtained using the proposed management method has a proven optimality under the given conditions. Therefore, the asymmetry between the information security monitoring data collection and processing subsystem and the set of security requirements in cyber-physical systems can be overcome.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Sign in / Sign up

Export Citation Format

Share Document