Spacecraft Attitude Maneuver Using Fast Terminal Sliding Mode Control Based on Variable Exponential Reaching Law

Author(s):  
Yue-Dong Wu ◽  
Shu-Fan Wu ◽  
De-Ren Gong ◽  
Ze-Yu Kang ◽  
Xiao-Liang Wang
Author(s):  
Liyin Zhang ◽  
Yuxin Su ◽  
Haihong Wang

This paper presents an improved robust tracking control for uncertain robot manipulators. An approximate fast terminal sliding mode control is proposed by integrating a nonsingular fast terminal sliding surface with an exponential reaching law. Lyapunov stability theory is employed to prove the global approximate finite-time stability ensuring that the tracking errors converge to an arbitrary small ball centered at zero within a finite time and thereafter arrive at zero asymptotically. The benefits of this integrated design are that it can ensure faster transient and higher steady-state tracking precision with lower chattering. Simulations and experiments are presented to demonstrate the effectiveness and improved performances of the proposed approach.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1776
Author(s):  
Changhong Jiang ◽  
Qiming Wang ◽  
Zonghao Li ◽  
Niaona Zhang ◽  
Haitao Ding

When a permanent magnet synchronous motor runs at low speed, the inverter will output discontinuous current and generate torque ripple; when the motor is runs at high speed, a large amount of stator harmonic current generates, which affects its speed following ability and torque stability. To ensure the fast and smooth switching of a permanent magnet synchronous motor in the full speed domain, this paper proposes the nonsingular terminal sliding mode control of PMSM speed control based on the improved exponential reaching law. Firstly, the improved exponential reaching law is composed of the state variables and power terms of the sliding mode surface functions. The reaching law function is designed in sections to balance the fast dynamic response of the system and chattering control. Secondly, an improved exponential reaching law based on the sliding mode control strategy of the PMSM speed loop is proposed. By designing the initial value of the integral term in the nonsingular terminal sliding mode surface function, the initial state of the system is located on the sliding mode surface. The integral sliding mode surface is used to reduce the system steady-state error, while the proposed sliding mode reaching law is used to increase the arrival speed and suppress system chattering, ultimately affecting modeling error problems, complex working conditions, and uncertainty factors. This paper proposes a sliding mode observer based on an improved exponential reaching law to compensate for the disturbances. Lyapunov stability theory can prove that this system can make the speed tracking error converge to zero in finite time. Hardware-in-the-loop experiments were used to validate the effectiveness of the proposed method.


2020 ◽  
pp. 107754632096428
Author(s):  
Ankur Goel ◽  
Saleh Mobayen

This article deals with a novel adaptive robust controller for uncertain nonlinear systems relying on a proportional–integral–derivative-type nonsingular fast terminal sliding mode control. In this nonsingular proportional–integral–derivative-type terminal sliding mode controller nonsingular fast terminal sliding mode control, the nonsingular fast terminal sliding mode control sliding surface is modified with integral to match with the proportional–integral–derivative-type structure to obtain the essential attributes, namely, quick transient response, finite-time convergence, negligible steady-state error, and chattering cancellation. Furthermore, a novel rapid reaching law is also suggested with dynamic proof for providing the robustness during transient phase. The controller stability and convergence is mathematically analyzed using the Lyapunov theory. The overall control structure is simulated on MATLAB® software and tested for trajectory tracking of a two-degree-of-freedom revolute–prismatic joint industrial robotic manipulator. The rigorous test results show the performance efficacy of the innovative controller.


Author(s):  
Mohammad Reza Salehi Kolahi ◽  
Mohammad Reza Gharib ◽  
Ali Heydari

This paper investigates a new disturbance observer based non-singular fast terminal sliding mode control technique for the path tracking and stabilization of non-linear second-order systems with compound disturbance. The compound disturbance is comprised of both parametric and non-parametric uncertainties. While warranting fast convergence rate and robustness, it also dominates the singularity and complex-value number issues associated with conventional terminal sliding mode control. Furthermore, due to the estimation properties of the observer, knowledge about the bounds of the uncertainties is not required. The simulation results of two case studies, the velocity and path tracking of an autonomous underwater vehicle and the stabilization of a chaotic Φ6-Duffing oscillator, validate the efficacy of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


Sign in / Sign up

Export Citation Format

Share Document