Effect of Reaction Temperature on the Fluorescence Properties of CMC/LaF3: Eu3+ Composites

Author(s):  
Yuhan Zhong ◽  
Guangxue Chen ◽  
Qing Wang
2016 ◽  
Vol 387 ◽  
pp. 1236-1246 ◽  
Author(s):  
Yi Zhang ◽  
Yaling Wang ◽  
Xiaoting Feng ◽  
Feng Zhang ◽  
Yongzhen Yang ◽  
...  

1967 ◽  
Vol 64 ◽  
pp. 173-182 ◽  
Author(s):  
Erhard J. Schimitschek ◽  
Richard B. Nehrich Jr ◽  
John A. Trias

1999 ◽  
Vol 96 (2) ◽  
pp. 303-318 ◽  
Author(s):  
G. A. Doka Nassionou ◽  
P. Magnoux ◽  
M. Guisnet

2008 ◽  
Author(s):  
Enkeleda Dervishi ◽  
Zhongrui Li ◽  
Fumiya Watanabe ◽  
Yang Xu ◽  
Viney Saini ◽  
...  

2000 ◽  
Vol 72 (3) ◽  
pp. 415 ◽  
Author(s):  
Joydip Das ◽  
Rosalie K. Crouch ◽  
Parkson Lee-Gau Chong

2019 ◽  
Vol 1 (3) ◽  
pp. 68
Author(s):  
Puguh Setyopratomo ◽  
Edy Purwanto ◽  
H. Yefrico ◽  
H. Yefrico

The synthesis of glycerol mono oleic from oleic acid and glycerol is classified as an esterification reaction. This research is aimed to study the influent of reaction temperature and catalyst concentration on reaction conversion. During the experiment the temperature of reaction mixture was varied as 110 oC, 130 oC, and 150 oC, while the catalyst concentration of 1%, 3 %, and 5% was used. The batch experiment was conducted in a glass reactor equipped with termometer, agitator, and reflux condensor. The oleic acid – glycerol mol ratio of 1 : 2 was used as a mixture feed. To maintain the reaction temperature at certain level, the oil bath was used. After the temperature of reaction mixture was reached the expected value, then H2SO4 catalyst was added to the reactor.  To measure the extent of the reaction, every 30 minutes the sample was drawn out from the reactor vessel. The sample analysis include acid number, density, and viscosity measurement. From this research the optimum condition which is the temperature of reaction of 150 oC and 1% catalyst concentration was obtained. At this optimum condition the convertion reach 86% and the analysis of other physical properties of the product show the acid number of 24.12, the density of 0.922 g/cc, and the viscosity of 118.4 cp.


1979 ◽  
Vol 44 (8) ◽  
pp. 2352-2365
Author(s):  
Josef Horák ◽  
Zina Sojková ◽  
František Jiráček

Control algorithm of the operating temperature is described in the reactor, which is operated at constant temperature and composition of the inlet mixture. The temperature is controlled by dosing a constant volume of the catalyst solution. The dosing frequency is determined according to the reaction temperature (deviation of the temperature from the desired value and the sign of the derivative of temperature). The control algorithm has been verified experimentally for the laboratory reactor in unstable steady state.


1980 ◽  
Vol 45 (11) ◽  
pp. 2903-2918 ◽  
Author(s):  
Josef Horák ◽  
Zina Valášková ◽  
František Jiráček

Algorithms have been presented, analyzed and experimentally tested to stabilize the reaction temperature at constant inlet temperature and composition of the feed by controlled dispensing of the catalyst. The information for the control element is the course of the reaction temperature. If the temperature of the reaction mixture is below the set point, the catalyst is being fed into the reactor at a constant rate. If the reaction temperature is higher the catalyst dispenser is blocked; dispensing of the catalyst is not resumed until the set point temperature has been reached again. The amount of catalyst added is a function of the duration of the switching cycle. The effect has been discussed of the form of this function on the course of the switching cycle. The results have been tested experimentally on a laboratory reactor controlled in an unstable steady state.


Sign in / Sign up

Export Citation Format

Share Document