Immersive Virtual Reality Environment for Construction Detailing Education Using Building Information Modeling (BIM)

Author(s):  
Maha ElGewely ◽  
Wafaa Nadim
2020 ◽  
Vol 4 (1) ◽  
pp. 19-34
Author(s):  
Pratheesh Kumar M. R. ◽  
Reji S. ◽  
Abeneth S. ◽  
Pradeep K.

Defect management in civil construction work is crucial. This work is aimed at analyzing the conventional method of construction defect management and to bring out a framework for integrating 5D building information modeling with mixed reality. This work is divided into three parts. The first part is the integration of 5D building information modeling with augmented reality that helps to understand the architectural concepts and visualize the workflow onsite. The second part of the work is to develop a user-defined target-based marker-less augmented reality to send screenshots of augmented models and exact progress of work from construction site to engineers working in other locations. The third part of the work is to integrate virtual reality to enable virtual tours of the real site that will be useful for the customers to visualize the building virtually and for the builders to promote sales.


2022 ◽  
Vol 27 ◽  
pp. 48-69
Author(s):  
Sahar Y. Ghanem

As the industry transitions towards incorporating BIM in construction projects, adequately qualified students and specialists are essential to this transition. It became apparent that construction management programs required integrating Building Information Modeling (BIM) into the curriculum. By bringing Virtual Reality (VR) technology to BIM, VR-BIM would transform the architectural, engineering, and construction (AEC) industry, and three-dimensional (3D) immersive learning can be a valuable platform to enhance students' ability to recognize a variety of building principles. The study carries out a methodology for implementing the VR-BIM in the construction management undergraduate program. Based on the previous literature review, in-depth analysis of the program, and accreditation requirements, VR-BIM will be implemented throughout the curriculum by combining stand-alone class and integration in the existing courses method. The challenges that may face the program planning to implement VR-BIM are discussed, and few solutions are proposed. The lab classroom layout appropriate for the applications is designed to be adjusted for several layouts to accommodate all learning styles and objectives. A comparison between different Head-Mounted Display (HMD) headsets is carried out to choose the appropriate equipment for the lab.


Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 229
Author(s):  
Jiayi Yan ◽  
Karen Kensek ◽  
Kyle Konis ◽  
Douglas Noble

Scientific visualization has been an essential process in the engineering field, enabling the tracking of large-scale simulation data and providing intuitive and comprehendible graphs and models that display useful data. For computational fluid dynamics (CFD) data, the need for scientific visualization is even more important given the complicated spatial data structure and large quantities of data points characteristic of CFD data. To better take advantage of CFD results for buildings, the potential use of virtual reality (VR) techniques cannot be overlooked in the development of building projects. However, the workflow required to bring CFD simulation results to VR has not been streamlined. Building information modeling (BIM) as a lifecycle tool for buildings includes as much information as possible for further applications. To this end, this study brings CFD visualization to VR using BIM tools and reports the evaluation and analysis of the results.


2018 ◽  
Vol 7 (3.33) ◽  
pp. 37
Author(s):  
Asilbek Ganiev ◽  
Ho Sun Shin ◽  
Kang Hee Lee

Modern people can use navigation on the outside to save time and get to the destination well. Likewise, in order to find out more information about a destination building, such a system is increasingly needed both in front of the computer (on-line) of the house and after reaching the destination in the building (off-line). Accordingly, we employ Building Information System (BIS) as a system that provide users with content related to a building like BIO and BIM. The Building Information Online system (BIO) is an interactive map application designed to assist customers in finding parcels and building on a map online. The Building Information Modeling (BIM) allows nD information to be visualized simultaneously by architects, engineers and constructors to gain a synchronized understanding viewing from different perspectives. Inspired by above researches, we implement a service that provides online and offline Virtual Reality (VR) and Augmented Reality (AR) content for a building. This system can provide users outside the building with information within the building via devices with VR and AR support regardless of space restrictions. The system is designed to operate across scenarios requiring offline, online, offline-online collaboration, etc., and the corresponding experiments are carried out.  


Author(s):  
Robertas Kontrimovičius ◽  
Leonas Ustinovičius ◽  
Mantas Vaišnoras

Aim of the article: to create a prototype of an information system of an optimized site plan using virtual reality technology (VRT). The article consists of two parts. The first part: the review of the literary sources used; a comparative analysis of the existing models of the construction site plans. Second part: the description of the prototype development of the information system (the algorithm) using building information modeling (BIM), and VRT.


Author(s):  
Sai Rohit Chenchu Boga ◽  
Bhargav Kansagara ◽  
Ramesh Kannan

In an educational perspective, unlike other disciplines, hands-on practice is difficult to come by in Civil Engineering. By providing a student with a realistic 3D simulation, we propose a concept that improves the understanding of the individual and eliminate guess-work entirely. Our platform that makes education fun and interactive by eliminating the constraints of a conventional teaching environment by incorporating Virtual Reality (VR) or Augmented Reality (AR) as a tool. AR can help the target audience visualize a model (to scale) in all three dimensions in the palm of their hand. This chapter explores the use of interactive 3D game environments in design visualization in Building Information Modeling (BIM) by adopting various available software packages and APIs. VR will allow the prospective customer to enter and explore a structure before it is constructed. This can be achieved by making use of a powerful game engine, in this case, Unity3D. In this chapter, we will describe ways to pivot Unity's functions towards the benefit of civil engineering.


Sign in / Sign up

Export Citation Format

Share Document