Motion Control of an IPMSM Drive System Using Sliding Mode Controller

Author(s):  
A. K. Naik ◽  
A. K. Panda ◽  
Sanjeeb Kumar Kar ◽  
M. Sahoo
Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3077 ◽  
Author(s):  
Madan Mohan Rayguru ◽  
Mohan Rajesh Elara ◽  
Balakrishnan Ramalingam ◽  
M. A. Viraj J. Muthugala ◽  
S. M. Bhagya P. Samarakoon

This work is inspired by motion control of cleaning robots, operating in certain endogenous environments, and performing various tasks like door cleaning, wall sanitizing, etc. The base platform’s motion for these robots is generally similar to the motion of four-wheel cars. Most of the cleaning and maintenance tasks require detection, path planning, and control. The motion controller’s job is to ensure the robot follows the desired path or a set of points, pre-decided by the path planner. This control loop generally requires some feedback from the on-board sensors, and odometry modules, to compute the necessary velocity inputs for the wheels. As the sensors and odometry modules are prone to environmental noise, dead-reckoning errors, and calibration errors, the control input may not provide satisfactory performance in a closed-loop. This paper develops a robust-observer based sliding mode controller to fulfill the motion control task in the presence of incomplete state measurements and sensor inaccuracies. A robust intrinsic observer design is proposed to estimate the input matrix, which is used for dynamic feedback linearization. The resulting uncertain dynamics are then stabilized through a sliding mode controller. The proposed robust-observer based sliding mode technique assures asymptotic trajectory tracking in the presence of measurement uncertainties. Lyapunov based stability analysis is used to guarantee the convergence of the closed-loop system, and the proposed strategy is successfully validated through numerical simulations.


Author(s):  
Fayez F. M. El-Sousy

In this paper, a robust hybrid control system (RHCS) for achieving high precision motion tracking performance of a two-axis motion control system is proposed. The proposed AHCS incorporating a recurrent wavelet-neuralnetwork controller (RWNNC) and a sliding-mode controller (SMC) to construct a RRWNNSMC. The two-axis motion control system is an x-y table of a computer numerical control machine that is driven by two field-oriented controlled permanent-magnet synchronous motors (PMSMs) servo drives. The RWNNC is used as the main motion tracking controller to mimic a perfect computed torque control law and the SMC controller is designed with adaptive bound estimation algorithm to compensate for the approximation error between the RWNNC and the ideal controller. The on-line learning algorithms of the connective weights, translations and dilations of the RWNNC are derived using Lyapunov stability analysis. A computer simulation and an experimental are developed to validate the effectiveness of the proposed RHCS. All control algorithms are implemented in a TMS320C31 DSP-based control computer. The simulation and experimental results using star and four leaves contours are provided to show the effectiveness of the RHCS. The motion tracking performance is significantly improved using the proposed RHCS and robustness to parameter variations, external disturbances, cross-coupled interference and frictional torque can be obtained as well for the two-axis motion control system.


Sign in / Sign up

Export Citation Format

Share Document