scholarly journals Robustness Verification of Quantum Classifiers

Author(s):  
Ji Guan ◽  
Wang Fang ◽  
Mingsheng Ying

AbstractSeveral important models of machine learning algorithms have been successfully generalized to the quantum world, with potential speedup to training classical classifiers and applications to data analytics in quantum physics that can be implemented on the near future quantum computers. However, quantum noise is a major obstacle to the practical implementation of quantum machine learning. In this work, we define a formal framework for the robustness verification and analysis of quantum machine learning algorithms against noises. A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data. In particular, this algorithm can find adversarial examples during checking. Our approach is implemented on Google’s TensorFlow Quantum and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises, derived from the surrounding environment. The effectiveness of our robust bound and algorithm is confirmed by the experimental results, including quantum bits classification as the “Hello World” example, quantum phase recognition and cluster excitation detection from real world intractable physical problems, and the classification of MNIST from the classical world.

Author(s):  
Sotiris Kotsiantis ◽  
Dimitris Kanellopoulos ◽  
Panayotis Pintelas

In classification learning, the learning scheme is presented with a set of classified examples from which it is expected tone can learn a way of classifying unseen examples (see Table 1). Formally, the problem can be stated as follows: Given training data {(x1, y1)…(xn, yn)}, produce a classifier h: X- >Y that maps an object x ? X to its classification label y ? Y. A large number of classification techniques have been developed based on artificial intelligence (logic-based techniques, perception-based techniques) and statistics (Bayesian networks, instance-based techniques). No single learning algorithm can uniformly outperform other algorithms over all data sets. The concept of combining classifiers is proposed as a new direction for the improvement of the performance of individual machine learning algorithms. Numerous methods have been suggested for the creation of ensembles of classi- fiers (Dietterich, 2000). Although, or perhaps because, many methods of ensemble creation have been proposed, there is as yet no clear picture of which method is best.


Author(s):  
Anna Nikolajeva ◽  
Artis Teilans

The research is dedicated to artificial intelligence technology usage in digital marketing personalization. The doctoral theses will aim to create a machine learning algorithm that will increase sales by personalized marketing in electronic commerce website. Machine learning algorithms can be used to find the unobservable probability density function in density estimation problems. Learning algorithms learn on their own based on previous experience and generate their sequences of learning experiences, to acquire new skills through self-guided exploration and social interaction with humans. An entirely personalized advertising experience can be a reality in the nearby future using learning algorithms with training data and new behaviour patterns appearance using unsupervised learning algorithms. Artificial intelligence technology will create website specific adverts in all sales funnels individually.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2018 ◽  
Vol 6 (2) ◽  
pp. 283-286
Author(s):  
M. Samba Siva Rao ◽  
◽  
M.Yaswanth . ◽  
K. Raghavendra Swamy ◽  
◽  
...  

2021 ◽  
Author(s):  
Yingxian Liu ◽  
Cunliang Chen ◽  
Hanqing Zhao ◽  
Yu Wang ◽  
Xiaodong Han

Abstract Fluid properties are key factors for predicting single well productivity, well test interpretation and oilfield recovery prediction, which directly affect the success of ODP program design. The most accurate and direct method of acquisition is underground sampling. However, not every well has samples due to technical reasons such as excessive well deviation or high cost during the exploration stage. Therefore, analogies or empirical formulas have to be adopted to carry out research in many cases. But a large number of oilfield developments have shown that the errors caused by these methods are very large. Therefore, how to quickly and accurately obtain fluid physical properties is of great significance. In recent years, with the development and improvement of artificial intelligence or machine learning algorithms, their applications in the oilfield have become more and more extensive. This paper proposed a method for predicting crude oil physical properties based on machine learning algorithms. This method uses PVT data from nearly 100 wells in Bohai Oilfield. 75% of the data is used for training and learning to obtain the prediction model, and the remaining 25% is used for testing. Practice shows that the prediction results of the machine learning algorithm are very close to the actual data, with a very small error. Finally, this method was used to apply the preliminary plan design of the BZ29 oilfield which is a new oilfield. Especially for the unsampled sand bodies, the fluid physical properties prediction was carried out. It also compares the influence of the analogy method on the scheme, which provides potential and risk analysis for scheme design. This method will be applied in more oil fields in the Bohai Sea in the future and has important promotion value.


The aim of this research is to do risk modelling after analysis of twitter posts based on certain sentiment analysis. In this research we analyze posts of several users or a particular user to check whether they can be cause of concern to the society or not. Every sentiment like happy, sad, anger and other emotions are going to provide scaling of severity in the conclusion of final table on which machine learning algorithm is applied. The data which is put under the machine learning algorithms are been monitored over a period of time and it is related to a particular topic in an area


InterConf ◽  
2021 ◽  
pp. 393-403
Author(s):  
Olexander Shmatko ◽  
Volodimir Fedorchenko ◽  
Dmytro Prochukhan

Today the banking sector offers its clients many different financial services such as ATM cards, Internet banking, Debit card, and Credit card, which allows attracting a large number of new customers. This article proposes an information system for detecting credit card fraud using a machine learning algorithm. Usually, credit cards are used by the customer around the clock, so the bank's server can track all transactions using machine learning algorithms. It must find or predict fraud detection. The dataset contains characteristics for each transaction and fraudulent transactions need to be classified and detected. For these purposes, the work proposes the use of the Random Forest algorithm.


Author(s):  
Virendra Tiwari ◽  
Balendra Garg ◽  
Uday Prakash Sharma

The machine learning algorithms are capable of managing multi-dimensional data under the dynamic environment. Despite its so many vital features, there are some challenges to overcome. The machine learning algorithms still requires some additional mechanisms or procedures for predicting a large number of new classes with managing privacy. The deficiencies show the reliable use of a machine learning algorithm relies on human experts because raw data may complicate the learning process which may generate inaccurate results. So the interpretation of outcomes with expertise in machine learning mechanisms is a significant challenge in the machine learning algorithm. The machine learning technique suffers from the issue of high dimensionality, adaptability, distributed computing, scalability, the streaming data, and the duplicity. The main issue of the machine learning algorithm is found its vulnerability to manage errors. Furthermore, machine learning techniques are also found to lack variability. This paper studies how can be reduced the computational complexity of machine learning algorithms by finding how to make predictions using an improved algorithm.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 264-265
Author(s):  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Younes Miar

Abstract American mink (Neovison vison) is the major source of fur for the fur industries worldwide and Aleutian disease (AD) is causing severe financial losses to the mink industry. Different methods have been used to diagnose the AD in mink, but the combination of several methods can be the most appropriate approach for the selection of AD resilient mink. Iodine agglutination test (IAT) and counterimmunoelectrophoresis (CIEP) methods are commonly employed in test-and-remove strategy; meanwhile, enzyme-linked immunosorbent assay (ELISA) and packed-cell volume (PCV) methods are complementary. However, using multiple methods are expensive; and therefore, hindering the corrected use of AD tests in selection. This research presented the assessments of the AD classification based on machine learning algorithms. The Aleutian disease was tested on 1,830 individuals using these tests in an AD positive mink farm (Canadian Centre for Fur Animal Research, NS, Canada). The accuracy of classification for CIEP was evaluated based on the sex information, and IAT, ELISA and PCV test results implemented in seven machine learning classification algorithms (Random Forest, Artificial Neural Networks, C50Tree, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) using the Caret package in R. The accuracy of prediction varied among the methods. Overall, the Random Forest was the best-performing algorithm for the current dataset with an accuracy of 0.89 in the training data and 0.94 in the testing data. Our work demonstrated the utility and relative ease of using machine learning algorithms to assess the CIEP information, and consequently reducing the cost of AD tests. However, further works require the inclusion of production and reproduction information in the models and extension of phenotypic collection to increase the accuracy of current methods.


Sign in / Sign up

Export Citation Format

Share Document