Extraction of Helicopter Rotor Physical Parameters Based on Time-Frequency Image Processing

Author(s):  
Chenxiao Lai ◽  
Daiying Zhou
Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550021 ◽  
Author(s):  
M. A. Al-Manie ◽  
W. J. Wang

Due to the advantages offered by the S-transform (ST) distribution, it has been recently successfully implemented for various applications such as seismic and image processing. The desirable properties of the ST include a globally referenced phase as the case with the short time Fourier transform (STFT) while offering a higher spectral resolution as the wavelet transform (WT). However, this estimator suffers from some inherent disadvantages seen as poor energy concentration with higher frequencies. In order to improve the performance of the distribution, a modification to the existing technique is proposed. Additional parameters are proposed to control the window's width which can greatly enhance the signal representation in the time–frequency plane. The new estimator's performance is evaluated using synthetic signals as well as biomedical data. The required features of the ST which include invertability and phase information are still preserved.


Author(s):  
Jun Liu ◽  
Zhihao Chen ◽  
Jijun Zhao ◽  
Shu Wang ◽  
Li Ding ◽  
...  

SummaryThe width of cut tobacco strands is an important indicator for physical parameters as well as for the smoking quality. In some countries, cut width helps to distinguish fine-cut tobacco and pipe tobacco and thus differentiates taxation rate. A new method for rapid measurement of the width of cut tobacco strands was developed based on digital image processing, because the method described in ISO 20193, though easy to implement in factories, proved time consuming and generated high testing costs. The essence of this method is to determine the statistic width of incisions. The straight-line segments represent the width of strands of cut tobacco, from which the determination of the width for randomly placed tobacco strands could be achieved. Five kinds of samples (‘ISO collaborative study samples 0.4 mm, 1.0 mm, 1.6 mm and 3.0 mm’ and ‘Guangdong baked 0.9 mm’) were used to study the comparability of the measurement results between the method presented in this work and the current ISO method. Results show that accuracy and repeatability are comparable. In addition, the testing efficiency of the method presented in this work appears to be higher than the current ISO method, and it is thus a promising alternative method for measuring the width of strands of cut tobacco.


2010 ◽  
Vol 36 ◽  
pp. 466-475
Author(s):  
Tsutomu Matsuura ◽  
Amirul Faiz ◽  
Kouji Kiryu

The differences method between 1-D wavelet transform and 2-D wavelet transform in image processing is discussed. Both proposed method uses the quotient of complex valued time-frequency information of observed signals to detect the number of sources. No less number of observed signals than the detected number of sources is needed to separate sources. The assumption on sources is quite general independence in the time-frequency plane, which is different from that of independent component analysis. Using the same given Algorithm and parameters for both method, the result on separated images are compared.


2011 ◽  
Vol 130-134 ◽  
pp. 2696-2700 ◽  
Author(s):  
Lei Zhang ◽  
Guo Qing Huang

The micro Doppler effect of the radar echo signal of helicopter rotor is studied, and the formula of helicopter rotor echo is obtained. Then the received echo signal of helicopter rotor simulated is analyzed in time domain, frequency domain and time-frequency domain respectively, the analysis results show that it is a good method to extract micro Doppler of helicopter rotor echo by time-frequency analysis. According to analysis results, obtained a method to determine parity of blades and velocity of helicopter rotor, these methods can be used to identify helicopter.


2012 ◽  
Vol 268-270 ◽  
pp. 1794-1800
Author(s):  
Ye Sun ◽  
Ren Chen ◽  
Guo Xi Wu ◽  
Li Na Sun ◽  
Li Hao Han

Definition of raceway shape and size has always been a challenging task. The whole physical parameters field can be used to describe the raceway boundary precisely, but all of the physical parameter fields are obtained from numerical simulation so far and there isn’t a specific criterion to define the raceway boundary. In this study, a new digital image processing technology has been developed to define the raceway boundary in cold model of blast furnace. The particle velocity contour criterion of raceway boundary definition is 0.15 m/s in this study and the precise raceway boundary can be obtained through this method.


2020 ◽  
Vol 100 (4) ◽  
pp. 78-86
Author(s):  
M. Baldychev ◽  
◽  
A. Bosyy ◽  
O. Galtseva ◽  

Currently, the development of satellite communications systems (SCS) is associated with the development of signals of complex structure. The popularization and distribution of software-defined radio systems (Software-defined radio, SDR) are noted, which leads to a decrease of quality of functioning of the SCS. Promising areas of countering the unauthorized use of the time-frequency resource of the KA repeater are methods aimed at determining the location of subscriber terminals (ST) and analyzing the service and semantic parts of the transmitted message. Accounting for changes of physical parameters requires the use of a large amount of heterogeneous a priori data; it is not achievable task in practice. According to the theory of mathematical statistics, the approximation is used at solving problems of sample analysis. The result of the approximation is a spatio-temporal radio-frequency portrait (STRFP) of an ST participating in the formation of a group signal. Thus, the aim of the research is to develop a model of changing the physical parameters of a radio signal and to study the possibility of approximating physical parameters in order to form a spatio-temporal radiofrequency portrait of an ST SCS.


Sign in / Sign up

Export Citation Format

Share Document