Wake Interaction of Two Rotationally Oscillating Cylinders Placed in a Side-By-Side Configuration

Author(s):  
Izhar Hussain Khan ◽  
Rahul Yadav ◽  
Sanjay Kumar
Keyword(s):  
Author(s):  
Huishe Wang ◽  
Qingjun Zhao ◽  
Xiaolu Zhao ◽  
Jianzhong Xu

A detailed unsteady numerical simulation has been carried out to investigate the shock systems in the high pressure (HP) turbine rotor and unsteady shock-wake interaction between coupled blade rows in a 1+1/2 counter-rotating turbine (VCRT). For the VCRT HP rotor, due to the convergent-divergent nozzle design, along almost all the span, fishtail shock systems appear after the trailing edge, where the pitch averaged relative Mach number is exceeding the value of 1.4 and up to 1.5 approximately (except the both endwalls). A group of pressure waves create from the suction surface after about 60% axial chord in the VCRT HP rotor, and those waves interact with the inner-extending shock (IES). IES first impinges on the next HP rotor suction surface and its echo wave is strong enough and cannot be neglected, then the echo wave interacts with the HP rotor wake. Strongly influenced by the HP rotor wake and LP rotor, the HP rotor outer-extending shock (OES) varies periodically when moving from one LP rotor leading edge to the next. In VCRT, the relative Mach numbers in front of IES and OES are not equal, and in front of IES, the maximum relative Mach number is more than 2.0, but in front of OES, the maximum relative Mach number is less than 1.9. Moreover, behind IES and OES, the flow is supersonic. Though the shocks are intensified in VCRT, the loss resulted in by the shocks is acceptable, and the HP rotor using convergent-divergent nozzle design can obtain major benefits.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Andreas Peters ◽  
Zoltán S. Spakovszky

Due to their inherent noise challenge and potential for significant reductions in fuel burn, counter-rotating propfans (CRPs) are currently being investigated as potential alternatives to high-bypass turbofan engines. This paper introduces an integrated noise and performance assessment methodology for advanced propfan powered aircraft configurations. The approach is based on first principles and combines a coupled aircraft and propulsion system mission and performance analysis tool with 3D unsteady, full-wheel CRP computational fluid dynamics computations and aeroacoustic simulations. Special emphasis is put on computing CRP noise due to interaction tones. The method is capable of dealing with parametric studies and exploring noise reduction technologies. An aircraft performance, weight and balance, and mission analysis was first conducted on a candidate CRP powered aircraft configuration. Guided by data available in the literature, a detailed aerodynamic design of a pusher CRP was carried out. Full-wheel unsteady 3D Reynolds-averaged Navier-Stokes (RANS) simulations were then used to determine the time varying blade surface pressures and unsteady flow features necessary to define the acoustic source terms. A frequency domain approach based on Goldstein’s formulation of the acoustic analogy for moving media and Hanson’s single rotor noise method was extended to counter-rotating configurations. The far field noise predictions were compared to measured data of a similar CRP configuration and demonstrated good agreement between the computed and measured interaction tones. The underlying noise mechanisms have previously been described in literature but, to the authors’ knowledge, this is the first time that the individual contributions of front-rotor wake interaction, aft-rotor upstream influence, hub-endwall secondary flows, and front-rotor tip-vortices to interaction tone noise are dissected and quantified. Based on this investigation, the CRP was redesigned for reduced noise incorporating a clipped rear-rotor and increased rotor-rotor spacing to reduce upstream influence, tip-vortex, and wake interaction effects. Maintaining the thrust and propulsive efficiency at takeoff conditions, the noise was calculated for both designs. At the interaction tone frequencies, the redesigned CRP demonstrated an average reduction of 7.25 dB in mean sound pressure level computed over the forward and aft polar angle arcs. On the engine/aircraft system level, the redesigned CRP demonstrated a reduction of 9.2 dB in effective perceived noise (EPNdB) and 8.6 EPNdB at the Federal Aviation Regulations (FAR) 36 flyover and sideline observer locations, respectively. The results suggest that advanced open rotor designs can possibly meet Stage 4 noise requirements.


2021 ◽  
Author(s):  
Roberta F. Neumeister ◽  
Adriane P. Petry ◽  
Sergio V. Möller

Abstract Crossflow over a row of cylinders with a close space ratio presents an asymmetric configuration with large and narrow wakes behind the cylinders. The wake interaction can impact the vibration response of the cylinders. In tube banks, the impact results in damages to the equipment. The present experimental study aims to analyze the influence of close space observed in a single row of cylinders on the flow-induced vibration. The study compares a single row with fixed cylinders and a single row with one cylinder free to vibrate. The cylinder free to vibrate is tested in four configurations. The study was conducted with an aerodynamic channel with a cross-section of 0.193 × 0.146 m and smooth cylinders with a diameter of 25.1 mm, space ratio is 1.26. The measurements are executed with hot-wire anemometry and accelerometers, for the cases with one cylinder free to vibrate and with hot-wire anemometry and microphones for the case with all fixed cylinders. The Reynolds number ranges between 1.0 × 104 and 4.5 × 104, obtained with the reference flow velocity, measured with a Pitot tube, and the cylinder diameter. The comparison between the wake response for single row fixed and single row and free to vibrate are executed using Fourier transform and Wavelet Transform. The comparison of the results with the models presented in the literature to predict the elastic instability of the fluid in a single row of cylinders is performed.


2021 ◽  
Author(s):  
Tobias Schubert ◽  
Reinhard Niehuis

Abstract An investigation of endwall loss development is conducted using the T106A low-pressure turbine cascade. (U)RANS simulations are complemented by measurements under engine relevant flow conditions (M2th = 0.59, Re2th = 2·105). The effects of unsteady inflow conditions and varying inlet endwall boundary layer are compared in terms of secondary flow attenuation downstream of the blade passage, analyzing steady, time-averaged, and time-resolved flow fields. While both measures show similar effects in the turbine exit plane, the upstream loss development throughout the blade passage is quite different. A variation of the endwall boundary layer alters the slope of the axial loss generation beginning around the midpoint of the blade passage. Periodically incoming wakes, however, cause a spatial redistribution of the loss generation with a premature loss increase due to wake interaction in the front part of the passage followed by an attenuation of the profile- and secondary loss generation in the aft section of the blade passage. Ultimately, this leads to a convergence of the downstream loss values in the steady and unsteady inflow cases.


Author(s):  
Frank Eulitz ◽  
Karl Engel

A time-accurate Reynolds-averaged Navier-Stokes solver has been extended for a phenomenological study of wake/bladerow interaction in a low pressure turbine near midspan. To qualitatively account for unsteady laminar-turbulent boundary layer transition, a variant of the Abu-Ghanam Shaw transition correlation has been coupled with the Spalart-Allmaras one-equation turbulence model. The method is shown to be capable of capturing separated-flow and wake-induced transition, as well as becalming and relaminarization effects. The model turbine investigated consists of three stator and two rotor rows. Instantaneous Mach number and eddy-viscosity plots are presented to monitor the wake migration and interaction with downstream boundary layers. Especially on the suction sides, very large fluctuations of the skin friction coefficient are observed. Effects of the near and far wakes are identified.


1993 ◽  
Vol 18 (3-4) ◽  
pp. 73-87 ◽  
Author(s):  
N.M Komerath ◽  
J.M Kim ◽  
S.G Liou

Sign in / Sign up

Export Citation Format

Share Document