Growth of Disturbances in a Pre-transitional Boundary Layer Downstream of Distributed Surface Roughness

Author(s):  
Robin Joseph ◽  
Sourabh S. Diwan
Author(s):  
Yagya Dutta Dwivedi ◽  
Vasishta Bhargava Nukala ◽  
Satya Prasad Maddula ◽  
Kiran Nair

Abstract Atmospheric turbulence is an unsteady phenomenon found in nature and plays significance role in predicting natural events and life prediction of structures. In this work, turbulence in surface boundary layer has been studied through empirical methods. Computer simulation of Von Karman, Kaimal methods were evaluated for different surface roughness and for low (1%), medium (10%) and high (50%) turbulence intensities. Instantaneous values of one minute time series for longitudinal turbulent wind at mean wind speed of 12 m/s using both spectra showed strong correlation in validation trends. Influence of integral length scales on turbulence kinetic energy production at different heights is illustrated. Time series for mean wind speed of 12 m/s with surface roughness value of 0.05 m have shown that variance for longitudinal, lateral and vertical velocity components were different and found to be anisotropic. Wind speed power spectral density from Davenport and Simiu profiles have also been calculated at surface roughness of 0.05 m and compared with k−1 and k−3 slopes for Kolmogorov k−5/3 law in inertial sub-range and k−7 in viscous dissipation range. At high frequencies, logarithmic slope of Kolmogorov −5/3rd law agreed well with Davenport, Harris, Simiu and Solari spectra than at low frequencies.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1127-1129 ◽  
Author(s):  
Avi Seifert ◽  
Howard P. Hodson

2021 ◽  
Vol 918 ◽  
Author(s):  
Zachary R. Murphree ◽  
Christopher S. Combs ◽  
Wesley M. Yu ◽  
David S. Dolling ◽  
Noel T. Clemens

Abstract


2001 ◽  
Vol 432 ◽  
pp. 69-90 ◽  
Author(s):  
RUDOLPH A. KING ◽  
KENNETH S. BREUER

An experimental investigation was conducted to examine acoustic receptivity and subsequent boundary-layer instability evolution for a Blasius boundary layer formed on a flat plate in the presence of two-dimensional and oblique (three-dimensional) surface waviness. The effect of the non-localized surface roughness geometry and acoustic wave amplitude on the receptivity process was explored. The surface roughness had a well-defined wavenumber spectrum with fundamental wavenumber kw. A planar downstream-travelling acoustic wave was created to temporally excite the flow near the resonance frequency of an unstable eigenmode corresponding to kts = kw. The range of acoustic forcing levels, ε, and roughness heights, Δh, examined resulted in a linear dependence of receptivity coefficients; however, the larger values of the forcing combination εΔh resulted in subsequent nonlinear development of the Tollmien–Schlichting (T–S) wave. This study provides the first experimental evidence of a marked increase in the receptivity coefficient with increasing obliqueness of the surface waviness in excellent agreement with theory. Detuning of the two-dimensional and oblique disturbances was investigated by varying the streamwise wall-roughness wavenumber αw and measuring the T–S response. For the configuration where laminar-to-turbulent breakdown occurred, the breakdown process was found to be dominated by energy at the fundamental and harmonic frequencies, indicative of K-type breakdown.


2012 ◽  
Vol 711 ◽  
pp. 516-544 ◽  
Author(s):  
David Tempelmann ◽  
Lars-Uve Schrader ◽  
Ardeshir Hanifi ◽  
Luca Brandt ◽  
Dan S. Henningson

AbstractThe receptivity to localized surface roughness of a swept-wing boundary layer is studied by direct numerical simulation (DNS) and computations using the parabolized stability equations (PSEs). The DNS is laid out to reproduce wind tunnel experiments performed by Saric and coworkers, where micron-sized cylinders were used to trigger steady crossflow modes. The amplitudes of the roughness-induced fundamental crossflow wave and its superharmonics obtained from nonlinear PSE solutions agree excellently with the DNS results. A receptivity model using the direct and adjoint PSEs is shown to provide reliable predictions of the receptivity to roughness cylinders of different heights and chordwise locations. Being robust and computationally efficient, the model is well suited as a predictive tool of receptivity in flows of practical interest. The crossflow mode amplitudes obtained based on both DNS and PSE methods are 40 % of those measured in the experiments. Additional comparisons between experimental and PSE data for various disturbance wavelengths reveal that the measured disturbance amplitudes are consistently larger than those predicted by the PSE-based receptivity model by a nearly constant factor. Supplementary DNS and PSE computations suggest that possible natural leading-edge roughness and free-stream turbulence in the experiments are unlikely to account for this discrepancy. It is more likely that experimental uncertainties in the streamwise location of the roughness array and cylinder height are responsible for the additional receptivity observed in the experiments.


1975 ◽  
Vol 42 (3) ◽  
pp. 591-597 ◽  
Author(s):  
D. H. Wood ◽  
R. A. Antonia

Mean velocity and turbulence intensity measurements have been made in a fully developed turbulent boundary layer over a d-type surface roughness. This roughness is characterised by regular two-dimensional elements of square cross section placed one element width apart, with the cavity flow between elements being essentially isolated from the outer flow. The measurements show that this boundary layer closely satisfies the requirement of exact self-preservation. Distribution across the layer of Reynolds normal and shear stresses are closely similar to those found over a smooth surface except for the region immediately above the grooves. This similarity extends to distributions of third and fourth-order moments of longitudinal and normal velocity fluctuations and also to the distribution of turbulent energy dissipation. The present results are compared with those obtained for a k-type or sand grained roughness.


Sign in / Sign up

Export Citation Format

Share Document