An Approach to Measure Functional Parameters for Ball-Screw Drives

Author(s):  
Naveed Riaz ◽  
Syed Irtiza Ali Shah ◽  
Faisal Rehman ◽  
Syed Omer Gilani ◽  
Emad-udin
2013 ◽  
Vol 769 ◽  
pp. 271-277 ◽  
Author(s):  
Christopher Ehrmann ◽  
Stefan Herder

Piezoelectric ceramics can be used as sensors, as well as actors. The concept of a self- sensing-actuator tries to use both modes of operation in one device, allowing the economic integration of mechatronic systems. Possible fields of application are ball screws of machine tools, where wear-induced degradation of the preload can be compensated. Furthermore, the signal processing part of such a system can be used to gather information related to the condition of the ball screw. Both excitation signal generation and filtering of the measured signal have to offer high flexibility and signal fidelity. In this article the concept of a power amplifier and its corresponding signal processing system are presented.


CIRP Annals ◽  
2013 ◽  
Vol 62 (1) ◽  
pp. 387-390 ◽  
Author(s):  
Kaan Erkorkmaz ◽  
Yasin Hosseinkhani

Author(s):  
Chinedum E. Okwudire ◽  
Peng Zhao

Due to the growing need for sustainable manufacturing processes, machine tool designers are constantly looking for ways to reduce unwanted structural vibrations without having to increase the mass/inertia of moving components, which in turn increases the energy consumption and cost of the machines. Recent research has shown that, due to the coupling introduced by the nut, the torque applied to ball screw drives by the motor causes undesirable lateral (bending) vibrations of the screw, which adversely affects the fatigue life and positioning accuracy of ball screw drives. By analyzing the stiffness matrix connecting the screw to the nut, this paper shows that the helix angle of the screw and the entry/exit angles of the balls have the most influence on the degree of coupling between motor torque and lateral vibrations of the screw. Consequently, by carefully selecting the helix angle of the screw together with the entry/exit angles of the balls, the undesirable lateral vibrations of the screw can be minimized, without having to increase the diameter (i.e. stiffness/inertia) of the ball screw. The merits and limitations of the proposed method are demonstrated using simulations on a single-axis ball screw driven machine.


Author(s):  
Fuhua Li ◽  
Tiemin Li ◽  
Yao Jiang ◽  
Fengchun Li

Ball screw drives are widely used in machine tools to provide accurate linear motion. Elastic deformation is one of the major error sources for ball screw drives in achieving high accuracy motion, and changes greatly when velocity varies. The influence of velocity on the elastic deformation can be estimated and it can be compensated by means of dynamic modeling and servo control method. This paper presents a dynamic model considering torque transmission between the ball screw and the nut. And stiffness is identified by a method of combining theoretical calculation and experimental tests on a constructed test bench, which has two novel symmetrical loading mechanisms. In order to analyze the influence of moving velocity on the elastic deformation, simulation and experiments are conducted when two trajectories which have velocity jumps are input. And the simulated elastic deformations are compared with experimental results to evaluate the accuracy of the model. The results show that the simulated results fit the experimental results with high accuracy. The relationship between the elastic deformation of ball screw drives and the velocity is linear based on the experimental results. Then the simulation results are used to compensate the elastic deformation based on the feed-forward compensation method. The results show that the differences between the actual compensation values and actual elastic deformation are small and most of the elastic deformation of the ball screw drives can be compensated. Therefore, the proposed dynamic model and compensation method can be used to improve the tracking accuracy of ball screw drives.


Sign in / Sign up

Export Citation Format

Share Document