Effect of Magnetic Pole Orientation on Viscoelastic Magnetic Abrasive Finishing Process

Author(s):  
K. Srinivas ◽  
Q. Murtaza ◽  
A. K. Aggarwal
2009 ◽  
Vol 76-78 ◽  
pp. 276-281 ◽  
Author(s):  
Yan Hua Zou ◽  
Takeo Shinmura ◽  
F. Wang

This research studies the influence of constant pressure acting on the magnetic particles brush for the precision machining of planar and curved workpieces. In particular, it examined the effects of constant pressure on improving the formal accuracy of the workpiece. This process method, constant pressure is applied to the magnetic pole of a conventional magnetic brush, the constant pressure acted to the surface of the workpiece through the magnetic particle brush formed at the magnetic pole surface. The authors conducted a plane magnetic abrasive finishing experiment using both the conventional magnetic abrasive finishing process and the newly proposed constant-pressure magnetic abrasive finishing process to compare the deburring characteristics between the processes for removing burrs from holes drilled in brass plate workpieces. In this experiment, a brass disk with a drilled hole was used as a workpiece. As a result, the difference in finishing characteristics was clarified. The results showed that the burr can be removed by use of this new plane magnetic abrasive finishing process and it is more useful than the conventional magnetic brush for improving the shape accuracy of the workpiece.


2008 ◽  
Vol 389-390 ◽  
pp. 199-204
Author(s):  
Wei Qiang Gao ◽  
L. Meng ◽  
Qiu Sheng Yan ◽  
J.H. Song ◽  
T.X. Qiu

In this paper, a new kind of NC magnetic abrasive finishing method with meshy polishing track to grind the parting face of mould was presented, and a new simple polishing tool using permanent magnet was also developed. Using the magnetic polishing tool, 3D NC polishing experiments was conducted on 2D parting surfaces. Experimental results reveal the relationship between several main parameters (rotational speed of magnetic pole, working gap, feeding speed and number of polishing times) and surface roughness. This study is expected to be helpful to improve the efficiency of finishing process, reduce worker's labor intensity, realize the effective control of finishing process and obtain fine quality of workpiece surface.


2011 ◽  
Vol 325 ◽  
pp. 536-541
Author(s):  
G.Y. Liu ◽  
Zhong Ning Guo ◽  
Yuan Bo Li ◽  
J.W. Liu

In hybrid process of electrolytic magnetic abrasive finishing (EMAF), there are usually two structures on the tool design, separated or composited. This paper has been focused on the design of the composite tool. How to make electrolyte reach working area is a problem which should be solved for the EMAF process when the composite tool is used, therefore a hollow structure of magnetic pole has been put forward as one possible solution. To understand the effects of the structure parameters of the tool on the abrasive brush of EMAF, Finite Element Method (FEM) has been employed to establish the magnetic field model and analyze the distribution of magnetic induction on the workpiece surface and magnetic pole.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Yanhua Zou ◽  
Ryunosuke Satou ◽  
Ozora Yamazaki ◽  
Huijun Xie

High quality, highly efficient finishing processes are required for finishing difficult-to-machine materials. Magnetic abrasive finishing (MAF) process is a finishing method that can obtain a high accuracy surface using fine magnetic particles and abrasive particles, but has poor finishing efficiency. On the contrary, fixed abrasive polishing (FAP) is a polishing process can obtain high material removal efficiency but often cannot provide a high-quality surface at the nano-scale. Therefore, this work proposes a new finishing process, which combines the magnetic abrasive finishing process and the fixed abrasive polishing process (MAF-FAP). To verify the proposed methodology, a finishing device was developed and finishing experiments on alumina ceramic plates were performed. Furthermore, the mechanism of the MAF-FAP process was investigated. In addition, the influence of process parameters on finishing characteristics is discussed. According to the experimental results, this process can achieve high-efficiency finishing of brittle hard materials (alumina ceramics) and can obtain nano-scale surfaces. The surface roughness of the alumina ceramic plate is improved from 202.11 nm Ra to 3.67 nm Ra within 30 min.


Sign in / Sign up

Export Citation Format

Share Document